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ABSTRACT 
 
Availability of clean and safe drinking water is one of the key determinants for public health and 
sustainable development. This study presents smart water quality monitoring (SWQM) system that 
applies sophisticated machine learning techniques for strengthening the accuracy of water quality 
assessments. IoT and Machine Learning Simulation Models, such as Random Forest and Gradient 
Boosting, have been used to determine the water portability when certain parameters such as PH, 
turbidity, and Dissolved Oxygen are kept as inputs into the SWQM system. Experimental studies, 
guided by methodologies such as Box-Behnken Design and Central Composite Design have made 
optimizations in coagulation processes used for improving urban drinking water treatment by 
manipulating the reduction of Total Organic Carbide, Total Nitrogen, and Total Suspended Solids 
concentrations. Real-time data collection and analysis efficiency using the enhanced IoT-enabled 
SWQMS is however proven to be superior and more effective with Random Forest model precision and 
recall. This study demonstrates the significance of taking IoT and ML into account when thinking about 
managing water resources. This research is necessary to solve the ground realities of developing 
countries concerning pollution and quality measurements in water monitoring. 
 
Keywords: Smart Water Quality Monitoring (SWQM), Dissolve Oxygen, Support Vector Machine,  Box –  

     Behnken Design (BBD), Central Composite Design (CCD) 
           
Aims Research Journal Reference Format:  
Ihama P.O. & Obahiagbon, K.O. (2024): Smart Water Quality Monitoring System’s Performance. Advances in Multidisciplinary and 
Scientific Research Journal Vol.  10. No. 4. Pp 31-52.. www.isteams.net/aimsjournal. dx.doi.org/10.22624/AIMS/V10N4P4 

 
 
1. INTRODUCTION 
 
Nigeria has experienced a prolonged history of water pollution challenges since its establishment 
in 1960. (Sabari et al., 2020). About 66.3 million Nigerians do not have access to safe drinking 
water (Berry et al., 2019). Besides the pollution of the water at the sources, there is also a 
significant deterioration of its quality by the time it gets to the point of use due to improper 
handling (Berry et al., 2019). Over the years, the water environment in developing countries like 
Nigeria has suffered from pollution, with little attention paid to the environmental risks posed by 
unregulated growth on water quality. Despite the proactive efforts of the Nigerian government to 
manage water resources, the issue of water pollution remains a persistent concern.  The study 
aimed to evaluate the effectiveness of the coagulation water treatment process in removing 
pollutants such as Total Organic Carbon (TOC), Total Nitrogen (TN), and Total Suspended Solids 
(TSS) from urban drinking water.  
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Polyaluminium Chloride (PAC) was used as a coagulant to assess the impact of the treatment 
process on the composition and diversity of these contaminants in metropolitan water supplies 
(Chen et al., 2022; Yateh et al., 2023). In the literature, an experimental design technique known 
as the Box-Behnken Design (BBD), was utilized to optimize multiple responses by varying three 
factors: pH, temperature (℃), and dosage (mgL^(-1)), each at three levels (low, medium, and 
high). A second-order quadratic regression model was employed to fit the water quality data, 
allowing for the capture of quadratic trends and the identification of optimal conditions for PAC 
performance. 
 
2. SMART WATER QUALITY MONITORING (SWQM) 
 
The SWQM comprises three components that collectively establish a fundamental network for 
the remote monitoring of water quality. These components encompass the sensing system, the 
communication system, and the head-end system (Yaroshenko et al., 2020). The Wireless 
Sensor Network sensing system executes the tasks of data collection, processing, and 
transmission. The process of data collection is facilitated through an array of sensing devices 
positioned at various locations within water bodies. This setup enables the collection of water 
samples over extensive areas at consistent time intervals (Yaroshenko et al., 2020).  
 
The sensing module includes a sensor transducer that measures the parameter and sends it to 
the processing unit for further analysis; thereafter, the data is transmitted through a 
communication unit to the intermediate nodes or gateway (Yaroshenko et al., 2020). All these 
operations are enabled by the power supply unit. Deploying multiple sensors at various locations 
along water bodies to acquire samples at more frequent intervals enhances the precision of 
water quality assessments (Yaroshenko et al., 2020). The enhancement is attributed to the 
increased availability of data for water quality studies.  
 
The communication system is responsible for transmitting the detected data to the head-end 
system. In a star architecture, this sensing node can transmit data directly to the gateway node, 
through intermediary nodes to the gateway node, or occasionally to the cloud. The gateway node 
facilitates simpler data transmission across a base station. The network topology, whether mesh 
or star, is the sole factor that affects the choice among different communication scenarios 
(Yaroshenko et al., 2020). Various network communication structures are available, categorized 
into three types: short-range, medium-range, and long-range communication. The enhancement 
is attributed to the increased availability of data for water quality studies. 
  
The communication system is responsible for transmitting the detected data to the head-end 
system. In a star architecture, the sensing node can transmit data directly to the gateway node, 
indirectly through intermediary nodes to the gateway node, or occasionally to the cloud. The 
gateway node simplifies data transmission through a base station. The network topology, 
whether mesh or star, is the sole factor that impacts the choice between different 
communication scenarios (Yaroshenko et al., 2020). There are various network communication 
structures that can be classified into three categories: short-range, medium-range, and long-
range communication. Moreover, the HES includes a user interface that performs additional 
computations, such as data classification and organization derived from the WSN.  
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Several methods are available for storing the acquired data, including offline, online, or cloud 
solutions. Data can be displayed to users using tables, charts, or graphs. Furthermore, 
supplementary calculations can be performed to visually depict water quality in water bodies by 
creating maps that illustrate the geographical distribution of water quality. Typically, remote 
monitoring stations archive water quality data in databases supported by management systems, 
which are mainly available online (Yaroshenko et al., 2020). 
 
2.1 Summary of Reviewed Literature 
 
Table 2.1: Summary of Reviewed Literature 

 S/ N Author Title Year Contributions to 
study 

Limitations 

1 Wiryasputra 
et al., 

IoT real-time 
potable 
water quality 
monitoring 
and 
prediction 
model 
grounded on 
cloud 
computing 
architecture 
to mitigate 
health risks. 

2024 By leveraging 
IoT, particularly 
for water quality 
monitoring, data 
on water quality 
components like 
temperature, 
alkalinity/acidity, 
and 
contaminants 
were gathered 
using a network 
of sensors. 
Through the 
amalgamation of 
machine 
learning 
techniques and 
water quality 
data, real-time 
predictions 
concerning the 
current potable 
water quality 
status were 
made. 
 
 
 
 
 
 
 

Enhanced 
sensors 
were not 
integrated or 
compared 
with 
alternative 
prediction 
models to 
fortify the 
overall 
monitoring 
system. 
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2 Murti et 
al., 

An intelligent 
system for 
monitoring 
water quality 
by leveraging 
long-range 
Internet of 
Things 
technology. 

2024 Their study 
suggested a tool 
enabled by IoT 
technology to 
swiftly and 
effectively 
monitor water 
quality through 
pH and turbidity 
sensors. These 
sensors were 
interfaced with a 
microcontroller 
as a controller, 
linked to a cloud 
service named 
Antares for data 
storage, and 
displayed on an 
android 
platform. 
 

The study did 
not 
incorporate 
the 
utilization of 
the water 
discharge 
parameter. 
 

3 Lal et al., Cost-effective IoT-
based system for 
monitoring lake 
water quality. 

2024 Developed and 
tested a system 
equipped with 
low-cost sensors 
to measure 
fundamental 
water quality 
parameters such 
as turbidity, total 
dissolved solids, 
temperature, pH, 
and dissolved 
oxygen. The 
system 
integrated IoT 
technology, solar 
power, and the 
capability to float 
akin to a small 
boat in fresh 
water. 
 
 
 

The system 
lacked a 
detailed 
system 
architecture 
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4 Yateh et 
al.  

Application of 
Response 
Surface 
Methodology to 
Optimize 
Coagulation 
Treatment 
Process of Urban 
Drinking Water 
Using 
Polyaluminium 
Chloride 

2023 Investigated the 
efficiency of the 
coagulation 
water treatment 
process to 
remove 
pollutants such 
as total organic 
carbon (TOC), 
total nitrogen 
(TN), and total 
suspended 
solids (TSS) from 
urban drinking 
water. The 
polyaluminium 
chloride (PAC) 
coagulant was 
applied to 
determine the 
impact of the 
treatment 
process on the 
structure and 
diversity of these 
pollutants in 
urban drinking 
water. 
Furthermore, the 
response 
surface 
methodology by 
the Box–
Behnken 
optimization 
analysis was 
applied to 
coagulant 
dosage, 
temperature, pH 
using the 
Quadratic 
model. 
 
 

The second-
order 
quadratic 
model is 
limited at the 
boundaries 
of the fitted 
curve and 
the BBD lack 
star point 
that 
addresses 
local 
variability 
and rotation 
in the data. 



  
   
 
 
 
 

 
  
 
 

36 
 

Volume 10, No  4, December 2024 Series 

 
       

5 Goodarzi 
et al.,  

The 
estimation of 
water quality 
index using 
machine 
learning 
algorithms in 
a specific 
case study 
conducted in 
the Yazd-
Ardakan 
Plain, Iran. 

2023 Utilized WQI 
(WHO) and Fuzzy 
AHP-WQI 
methods to 
assess the 
quality of 96 
wells in the area, 
and 
subsequently 
compared the 
outcomes of 
these two 
approaches. 
Results from the 
WQI (WHO) 
method revealed 
that 72 out of 96 
wells were 
classified as 
having good 
water quality, 
while 23 wells 
were rated as 
poor. 
 

The study did 
not delve 
 into 
investigating 
uncertainties 
in critical 
values or 
weights 
within the 
WQI metric, 
and lacked a 
detailed 
system 
architecture. 
 

6 Alzahrani 
et al.,  

Internet of 
things (IoT)-
based 
wastewater 
management 
in smart 
cities 

2023 The simulated 
analysis 
demonstrated 
that the 
proposed 
approach attains 
a high 
wastewater 
recycling rate of 
96.3%, 
efficiency ratio 
of 88.7%, low 
moisture content 
ratio of 32.4%, 
increased 
wastewater 
reuse of 90.8%, 
and prediction 
ratio of 92.5%. 
 

Deep 
learning 
technology 
was not 
incorporated 
for 
expanding 
the system. 
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7 Shams 
et al.,  

The 
utilization of 
machine 
learning 
models 
based on the 
grid search 
method for 
water quality 
prediction. 

2023 The grid search 
approach was 
employed to 
tune parameters 
for four 
classification 
models and four 
regression 
models. RF, 
XGBoost, 
AdaBoost, and 
GB models were 
used for 
classification, 
while KNN, DT, 
SVR, and MLP 
models were 
used for 
regression in 
predicting WQC 
and WQI, 
respectively. 
Assessment 
metrics such as 
accuracy, recall, 
precision, F1 
score, MCC, 
MAE, MedAE, 
MSE, and R2 
were computed 
to evaluate 
model 
performance. 

Recurrent 
neural 
networks 
with LSTM 
were not 
employed in 
the 
prediction, 
nor was a 
time series 
analysis of 
WQI and 
WQC in the 
presence of 
climate 
change 
variables 
conducted. 
 

7 Jáquez 
et al.,  

An expansion of 
LoRa coverage 
and the 
incorporation of 
an unsupervised 
anomaly detection 
algorithm into an 
Internet of Things 
(IoT) system 
designed for 
monitoring water 
quality. 

2023 The system 
undertook tasks 
such as data 
collection, 
storage, 
anomaly 
detection, and 
remote real-time 
alarm 
transmission to 
enable 
information. 

The 
proposed 
system 
lacked a 
detailed 
system 
architecture. 
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8 Chen et 
al.,  

An IoT-Based 
Fish Farm 
Water Quality 
Monitoring 
System. 

2022 A robotic arm 
was engineered 
for executing 
automatic 
measurements 
and 
maintenance 
tasks, featuring 
a programmable 
logic controller, a 
single chip 
integrated with a 
wireless 
transmission 
module, and an 
embedded 
system. The 
system was 
segregated into 
control, 
measurement, 
server, and 
mobility 
components.  

The authors 
did not 
employ the 
grouper 
model farm 
and big data 
for 
integrating 
diverse 
monitoring 
modules in 
breeding 
ponds. 

9 Singh et 
al.,  

A study on water 
quality monitoring 
and management 
within building 
water tanks 
through the 
utilization of 
Industrial Internet 
of Things (IoT) 
technologies. 

2021 Their proposal 
centered on an 
IoT-enabled 
framework for 
monitoring both 
water level and 
quality in 
domestic water 
tanks, featuring 
distinct upper 
and lower tank 
monitoring units. 
Integration of a 
cloud server-
enabled Virtuino 
app facilitated 
real-time 
monitoring and 
visualization of 
sensor data on a 
graphical user 
interface (GUI)  

Absence of 
sensors like 
dissolved 
oxygen, 
conductivity, 
as well as 
the lack of 
an edge 
computing-
enabled 
vision device 
for rapid 
detection of 
specific 
bacteria and 
harmful 
particles 
through 
machine 
learning 
algorithms. 
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10 Bogdan 
et al.,  

A cost-effective 
Internet of Things 
(IoT) water-
quality 
monitoring 
system tailored 
for rural regions. 

2023 Findings from 
their study 
indicated the 
scalability of the 
system to cater 
to the water 
monitoring 
needs of 
different rural 
areas. Moreover, 
their 
experiments 
identified 
suitable water 
sources for 
public 
consumption 
while flagging 
those that 
should be 
avoided. 
Notably, all the 
tested water 
sources were 
potable, with an 
exception where 
total dissolved 
solids (TDS) 
exceeded the 
acceptable limit 
of 500 ppm. 

The authors 
overlooked 
the addition 
of extra 
sensors, and 
a data 
analysis 
methodology 
grounded in 
various 
machine-
learning 
techniques. 
 

 
 
3. DESCRIPTION OF THE DATASET 
 
Access to clean and safe drinking water is not only a fundamental human right but also a crucial 
determinant of public health and sustainable development. Recognizing the strong correlation 
between water quality and human well-being, this study investigates a dataset encompassing water 
quality metrics from 3276 diverse water bodies, available in kaggle, an online data repository. The 
dataset features a range of parameters indicative of water portability, including pH, hardness, total 
dissolved solids (TDS), chloramines, sulphate, conductivity, organic carbon, and turbidity. Each 
parameter's role in determining water safety is briefly outlined, referencing standards established by 
organizations like the World Health Organization (WHO) and the US Environmental Protection Agency 
(EPA). For instance, acceptable pH levels are noted as falling between 6.5 and 8.5, while TDS should 
ideally be below 500 mg/L. 
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The dataset further includes a binary 'Portability' indicator, classifying each water body as either safe 
(1) or unsafe (0) for human consumption. This categorization serves as the target variable for 
subsequent analyses, potentially enabling the development of predictive models to assess portability 
based on measured water quality metrics. 
 
3.1 Sequence Diagram of the Current System 
Figure 3.1 illustrates the sequence of steps and interactions involved in a real-time water quality 
monitoring system, likely using simulated data for demonstration or testing purposes. 
 
Key Components: 

i. Local Control Unit: This is the on-site control center where the monitoring process is initiated 
and potentially where local data visualization or alarms might be displayed. 

ii. Remote Management Center: A central location where data is further analyzed and potentially 
where more comprehensive visualization and management tools are available. 

iii. Central Control Module: The core module responsible for coordinating the entire monitoring 
process. 

iv. Data Processing & Transmission Module: Handles the preprocessing of raw data and its 
transmission to other modules or centers. 

v. Data Acquisition Module: Gathers data from various sensors (Conductivity, pH, Temperature, 
etc.). 

vi. Wireless Module: Facilitates wireless communication between the local control unit and the 
remote management center. 

vii. Sensors: Devices measuring specific water quality parameters. 
viii. Water Distribution Unit: The physical system where water is being distributed and monitored. 

 
Sequence of Events: 

1. User Initiates Monitoring: The process starts when a user (likely at the Local Control Unit) 
triggers the monitoring session. 

2. Data Stream Initiation: The system starts receiving simulated sensor data. This could involve 
reading from a pre-recorded dataset or generating data based on predefined patterns. 

3. Data Acquisition: The Data Acquisition Module collects the incoming sensor data. 
4. Data Processing & Transmission: The raw data is preprocessed (cleaned, normalized, etc.) and 

then sent to the Central Control Module and potentially also transmitted to the Remote 
Management Center via the Wireless Module. 

5. Prediction and Analysis: The Central Control Module uses machine learning models to analyze 
the data and predict water quality metrics. 

6. Alert and Visualization: Based on the analysis, the system may trigger alarms if any parameters 
exceed predefined thresholds. Additionally, the processed data and predictions are visualized 
on dashboards at both the Local Control Unit and the Remote Management Center. 
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Figure 3.1: Sequence Diagram of the Current System 

 
3.1 Class Diagram of the Current System 
The class diagram in figure 3.2 illustrates the static structure of the system, illustrating the classes, 
characteristics, and methods involved: 

i. Data Simulator: Handles the simulation of real-time water quality data. 
ii. Data Processor: Responsible for cleaning, standardizing, and preparing data for analysis. 
iii. Machine Learning Model: Implements the machine learning techniques used for predicting 

water quality. 
iv. Alert System: Manages the development and dispatch of alerts based on the evaluation of 

water parameters. 
v. Visualization Dashboard: Provides the interface for users to examine real-time data and 

analytics. 
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Figure 3.2: The Current System’s Class Diagram 

 
3.2 Experimental Design 
In RSM application, the factors are usually more than one. Hence, the choice of appropriate levels to 
be studied for the explanatory variables is also vital as it can affect model correctness. The 
Experimental Design phase permits an appropriate design that can adequately and substantially 
estimation relationship between the response and one or more factors. Ordinarily applied DOEs in 
RSM include: 2 full factorial design, 3 full factorial design, and the CCD.  In CCD, the number of 
experimental setup or run can be obtained by the mathematical relation given by; 2 + 2𝑘 + 𝑘 , and 
all the factors are studied at five levels given as: (−, 𝛼, −1, 0, 1, 𝛼), where 2 is the full factorial design, 
2𝑘  axial (star) points which are located at distance 𝛼 = √2ర

 from the center point and 𝑘. In this 
case 𝑘 = 3, the numbers of factors utilized in the design and 𝑘 = 1. Therefore, the total number of 
experimental run is equals thirteen and for the data collection see (Eguasa et al., 2022). 
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3.4.1 The Box – Behnken design (BBD) 
A BBD permits for the design of the second-order regression model in a given response that is 
frequently used for process optimization (Hovat et al., 2013). The BBD comprises three types of trials 
namely; two levels (2) full factorial designs, 2𝑘  axial (star) points and 𝐶, pth central points (Bezerra 
et al., 2008).  The mathematical expression for the BBD is given as: 
 

𝐵𝐵𝐷 =  2𝑘ଶ − 2𝑘 + 𝐾               (1) 
  

where 2𝑘ଶ is the factorial portion, 2𝑘 is the axial or star points and 𝐾is at least pth central points 
utilized in the design. In this design 𝑘 = 3  and 𝐾 = 3 which from equation (1) sum up to 15 
experimental run. 
 
Table 3.1:  Input process factors form BBD (Yateh et al., (2023))  

Factors Unit Code 
 

Levels 
Low             High 

pH - 𝑥ଵ 5                     7 
Temperature ℃ 𝑥ଶ 21                  22 

Dosage 𝑚𝑔𝐿ିଵ 𝑥ଷ 5                    80 
 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠 𝑓𝑜𝑟 𝐵𝐵𝐷 = 2𝐾ଶ − 2𝐾 + 𝐾, 𝑤ℎ𝑒𝑟𝑒 𝐾 = 3, 𝑟 = 3 
 
K= number of factors; 𝑟 = number of independent generators; 𝐾 = the replicate number of the central 
point.  
 
Table 3.2 Experimental matrix for the factors and three responses (Yateh et al., (2023)) 

Runs 
pH 
𝑥ଵ 

Temp. ( 0C) 
𝑥ଶ 

Dosage 
𝑥ଷ 

          TOC                        TN                          TSS 
 
   O               P              O               P          O               P 

1 6 21 42.5 2.02 4.12 1.69 2.12 97.8 78.6 
2 6 21 42.5 1.54 4.12 1.43 2.12 65.3 78.6 
3 5 21 80 1.74 -2.15 1.45 2.03 122.2 129.7 
4 7 21 80 1.24 1.41 1.12 1.17 190.3 181.3 
5 6 20 5 21.36 19.8 1.41 1.72 77.6 73.5 
6 6 22 80 5.54 7.1 2.28 1.98 110.6 114.7 
7 6 21 42.5 8.81 4.12 3.23 2.12 72.8 78.6 
8 6 22 5 5 2.84 3.19 3.52 60.0 62.6 
9 7 21 5 2.77 6.66 2.75 2.17 120.8 113.3 

10 6 20 80 2.63 4.79 3.21 2.87 131.9 129.3 
11 5 22 42.5 2.97 5.3 2.53 2.25 114.5 103.0 
12 5 20 42.5 3.75 5.49 1.48 1.23 71.5 66.6 
13 5 21 5 3.53 3.35 1.48 1.43 80.7 89.7 
14 7 20 42.5 18.39 16.06 1.44 1.72 141.9 153.4 
15 7 22 42.5 3.33 1.6 1.37 1.62 86.5 91.4 
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Note: O means Observed Values, P means Predicted Values for the respective TOC, TN and TSS. 
 
Table 3.3: Experimental design (BBD) for TOC, TN and TSS removal  

Experimental 
Run 

pH 
𝑥ଵ 

Temp.      
  (℃) 

𝑥ଶ 

Dosage 
(𝑚𝑔𝐿ିଵ) 

𝑥ଷ 

TOC 
𝑦ଵ 

       TN 
𝑦ଶ 

 
      TSS 

𝑦ଷ 

1 -1 -1 0 2.02 1.69 97.8 

2 +1 -1 0 1.54 1.43 65.3 

3 -1 +1 0 1.74 1.45 122.2 

4 +1 +1 0 1.24 1.12 190.3 

5 -1 0 -1 21.36 1.41 77.6 

6 +1 0 -1 5.54 2.28 110.6 

7 -1 0 +1 8.81 3.23 72.8 

8 +1 0 +1 5 3.19 60.0 

9 0 -1 -1 2.77 2.75 120.8 

10 0 +1 -1 2.63 3.21 131.9 

11 0 -1 +1 2.97 2.53 114.5 

12 0 +1 +1 3.75 1.48 71.5 

13 0 0 0 3.53 1.48 80.7 

14 0 0 0 18.39 1.44 141.9 

15 0 0 0 3.33 1.37 86.5 

 
Data transformation using central composite design (CCD) to RSM Data 
 
The values of the explanatory variables are coded between 0 and 1. The data collected via a CCD is 
transformed by a mathematical relation: 
 

 𝑥ோௐ =
ெ(௫ೀಽವ)ି௫బ

൫ெ(௫ೀಽವ)ିெ௫(௫ೀಽವ)൯
                  (2)  

 
where 𝑥ோௐ is the transformed value, 𝑥 is the target value that needed to be transformed in the 
vector containing the old coded value,  represented as 𝑥ை , Min (𝑥ை) and  𝑀𝑎𝑥(𝑥ை) are the 
minimum and maximum values in the vector 𝑥ை  respectively, (Eguasa et al, 2022). 
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Table  3.4:  Input process factors for with the addition of axial points (CCD) 
Operating 
Factors 

Symbol Coded 
Factors 

Coded Levels 

−𝛼
= −1.682 

-1(Low) 0(Medium) +1(High) +𝛼 = 
+1.682 

pH - 𝑥ଵ 4 5 6 7 8 
Temperature  ℃ 𝑥ଶ 20.5 21 21.5 22 22.5 
Dosage 𝑚𝑔𝐿ିଵ 𝑥ଷ 0 5 42.5 80 85 

 
Table 3.4, explains the choice of CCD in the addition of axial point to the coded factors that can capture 
curvature and maintain rotatability in the data 𝛼 = ±√2ర

 , where k= the number of factors used in the 
design. Therefore, 𝛼 = ±1.682 see Eguasa, (2020). 
 
Table 3.5: Experimental design (CCD) for TOC, TN and TSS removal  

Experimental 
Run 

pH 
𝑥ଵ 

Temp.      
  (℃) 

𝑥ଶ 

Dosage 
 (𝑚𝑔𝐿ିଵ) 

𝑥ଷ 

TOC 
𝑦ଵ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

       TN 
𝑦ଶ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

 
      TSS 

𝑦ଷ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

1 -1 -1 -1 2.02 1.69 97.8 

2 1 -1 -1 1.54 1.43 65.3 

3 -1 1 -1 1.74 1.45 122.2 

4 1 1 -1 1.24 1.12 190.3 

5 -1 -1 1 21.36 1.41 77.6 

6 1 -1 1 5.54 2.28 110.6 

7 -1 1 1 8.81 3.23 72.8 

8 1 1 1 5 3.19 60.0 

9 -1.682 0 0 2.77 2.75 120.8 

10 1.682 0 0 2.63 3.21 131.9 

11 0 -1.682 0 2.97 2.53 114.5 

12 0 1.682 0 3.75 1.48 71.5 

13 0 0 -1.682 3.53 1.48 80.7 

14 0 0 1.682 18.39 1.44 141.9 

15 0 0 0 3.33 1.37 86.5 
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Target  points𝑥 : − 1 , −1, −1, ; 𝑀𝑖𝑛(𝑥ை): −

1.682 , −1.682, −1.682, ;  𝑀𝑎𝑥(𝑥ை): 1.682, 1.682, 1.682  
 

𝑥ோௐ =
𝑀𝑖𝑛(𝑥ை) − 𝑥

൫𝑀𝑖𝑛(𝑥ை) − 𝑀𝑎𝑥(𝑥ை)൯
 

 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥ଵ ∶  𝑥ଵଵ =
−1.682 − (−1)

((−1.682) − (1.682))
= 0.2030 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥ଶ ∶  𝑥ଵଶ =
−1.682 − (−1)

((−1.682) − (1.682))
= 0.2030 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥ଷ ∶  𝑥ଵଷ =
−1.682 − (−1)

൫(−1.682) − (1.682)൯
= 0.2030 

 
Table 3.6: Experimental design for TOC, TN and TSS removal  

Experimental 
Run 

pH 
𝑥ଵ 

Temp.      
  (℃) 

𝑥ଶ 

Dosage 
 (𝑚𝑔𝐿ିଵ) 

𝑥ଷ 

TOC 
𝑦ଵ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

       TN 
𝑦ଶ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

 
      TSS 

𝑦ଷ𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

1 0.2030 0.2030 0.2030 2.02 1.69 97.8 

2 0.7970 0.2030 0.2030 1.54 1.43 65.3 

3 0.2030 0.7970 0.2030 1.74 1.45 122.2 

4 0.7970 0.7970 0.2030 1.24 1.12 190.3 

5 0.2030 0.2030 0.7970 21.36 1.41 77.6 

6 0.7970 0.2030 0.7970 5.54 2.28 110.6 

7 0.2030 0.7970 0.7970 8.81 3.23 72.8 

8 0.7970 0.7970 0.7970 5 3.19 60.0 

9 0.0000 0.5000 0.5000 2.77 2.75 120.8 

10 1.0000 0.5000 0.5000 2.63 3.21 131.9 

11 0.5000 0.0000 0.5000 2.97 2.53 114.5 

12 0.5000 1.0000 0.5000 3.75 1.48 71.5 

13 0.5000 0.5000 0.0000 3.53 1.48 80.7 

14 0.5000 0.5000 1.0000 18.39 1.44 141.9 

15 0.5000 0.5000 0.5000 3.33 1.37 86.5 
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Based on the type of response, the desirability function transforms the estimated response, 𝑦ො(𝒙) to 

different individual scalar measure, 𝑑 ቀ𝑦ො(𝒙)ቁ namely: 
 

For larger-the-better (LTB) response  𝑑 ቀ𝑦ො(𝒙)ቁ is given as:   
 

 𝑑 ቀ𝑦ො(𝒙)ቁ     =  ൞

0,

ቄ
௬ො(𝒙)ି

்ି
ቅ

௧భ

1,

,

       𝑦ො(𝒙) < 𝐿

               𝐿 ≤ 𝑦ො(𝒙) ≤ 𝑇

       𝑦ො(𝒙) > 𝑇,

,   𝑠. 𝑡 𝒙𝜖 𝜑 ,  (3)  

 
where 𝑇and L are the maximum acceptable value and lower limit, respectively, of the 𝑝௧ response. 
where  𝜌 is the target value of the 𝑝௧ response. However, for RSM data, the parameters values of  
𝑡ଵ 𝑎𝑛𝑑 𝑡ଶ are weights taken to be 1 for linearity (Eguasa et al., 2022). 
 
 
4. OVERVIEW OF RESULTS 
 
The water quality monitoring system's performance was evaluated using multiple machine learning 
models on a dataset that included various water portability parameters. The models tested included 
Logistic Regression, Random Forest, Support Vector Machine (SVC), K-Nearest Neighbors, Gradient 
Boosting, and a Neural Network (MLPClassifier). The evaluation metrics used were accuracy, precision, 
recall, F1-score, and  ROC-AUC. Among the models, Random Forest and Gradient Boosting 
demonstrated superior performance, particularly in terms of accuracy and precision, which are crucial 
for ensuring reliable predictions of water portability. 

 
 

Figure 4.1: First Code Evaluation 
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Figure 4.2: Figure Showing Voting Classifier After Training 
 
 

 
 

Figure 4.3: Optimization History Plot 
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Figure 4.4: Hyperparameter Functions Importance 
 

 
 

Figure 4.5:Final Empirical Distribution Training 
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4.31 Comparative Analysis of the various ML Models 
A comparative analysis of the machine learning models revealed the following insights: 

i. Random Forest emerged as one of the best-performing models, achieving high accuracy and 
balanced recall. The model's ability to aggregate the predictions of multiple decision trees 
made it robust against overfitting, which is often a challenge in classification tasks with diverse 
and potentially noisy data. 

ii. Gradient Boosting also performed strongly, particularly after hyperparameter optimization 
using Optuna. The iterative nature of Gradient Boosting, where each tree attempts to correct 
the errors of its predecessor, allowed for fine-tuning that significantly improved predictive 
power. This model was particularly effective at identifying nuanced patterns in the data. 

iii. Support Vector Machine (SVC) and K-Nearest Neighbors (KNN) provided strong precision 
scores, indicating their effectiveness in correctly identifying positive cases of potable water. 
However, they showed lower recall, suggesting a tendency to miss some instances, which could 
be critical in ensuring safe drinking water. 

iv. Neural Network (MLPClassifier) showed competitive accuracy after considerable 
computational effort and hyperparameter tuning. Despite its complexity, the model's 
performance was comparable to the ensemble methods, making it a viable option in scenarios 
where the dataset is large and complex patterns need to be captured. 

 
Overall, Random Forest and Gradient Boosting stood out as the most reliable models, offering a 
balance between sensitivity (recall) and specificity (precision), which is crucial for accurate water 
quality monitoring. 
 
 
 
4.2  Sensor Performance 
Although this study did not directly involve IoT sensors, the findings are highly relevant to real-world 
sensor applications in water quality monitoring. The robustness of the Random Forest and Gradient 
Boosting models suggests that these algorithms could effectively handle real-time data from IoT 
sensors, even in the presence of minor inaccuracies or noise. In a practical deployment, sensor 
calibration and maintenance would be critical to ensure data accuracy. The models' ability to manage 
noisy or imperfect data highlights their potential in real-time monitoring systems where sensor 
reliability might vary. Therefore, integrating these machine learning models with IoT-based monitoring 
systems could significantly enhance the accuracy and reliability of water quality assessments. 
 
5.  CONCLUSION 
 
In conclusion, our work underlines the transformational potential of IoT and machine learning in water 
quality monitoring. The proposed simulation-based technique offers a practical and cost-effective way 
to solve the limitations of previous methodologies. The higher performance of Random Forest and 
Gradient Boosting models, along with their capacity to handle real-time sensor input, shows their 
applicability for real-world applications. The findings derived from the dataset analysis underscore the 
need of monitoring critical metrics including pH, turbidity, and dissolved oxygen for early detection of 
water quality issues. The incorporation of powerful machine learning algorithms into Internet of Things 
based monitoring systems holds the possibility of more effective water resource management and 
protection. 



  
   
 
 
 
 

 
  
 
 

51 
 

Volume 10, No  4, December 2024 Series 

 
       

This research illustrates that the coagulation technique, recognized for its straightforwardness and 
cost-effectiveness, serves as a viable method for eliminating contaminants from urban drinking water. 
Although various coagulants have been evaluated for urban water treatment, Polyaluminium Chloride 
(PAC) emerged as particularly proficient in decreasing total organic carbon (TOC), total suspended 
solids (TSS), and total nitrogen (TN). As a result, the statistical modeling and optimization of the 
coagulation process were investigated in greater depth. The data gathered were analyzed using 
Response Surface Methodology (RSM) with a Central Composite Design (CCD) to ascertain optimal 
conditions and process specifications. 
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