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ABSTRACT 
 

In this study, an attempt is made to  reduce  or minimize the  error of a fuzzy data using non-linear 
geometric regression.  A model is derived and error of a non-linear geometric data set is estimated 
using the Tanaka possibilistic approach as it is even more compact and does not gives room for 
outliers when data is being fitted. The method is generalized for the linear programming problem and 
the process is demonstrated with a numerical example in which the data is converted to crisp before 
the error is then estimated and thereby making comparison with the traditional linear regression. It is 
concluded from the numerical illustration that the model provided a better fit to the data than the 
traditional linear regression model. 
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1.  INTRODUCTION 
In statistics, the non-linear regression is a form of regression analysis in which observational data 
are modelled by a function which is a non-linear combina- tion of the model parameters and 
depends on one or more independent variables [1]. The data are fitted by method of successive 
approximations. in non-linear regression, a statistical model of the form y f (x, β) relates a vector of 
inde- pendent variables x, and its associated observed dependent variables, y. The function f is 
non-linear in the components of the vector of parameters β, but otherwise arbitrary. Thus 
 

f (x, β) = β1 X  [2] 
2 

 

This function is non-linear because it cannot be expressed as a linear com- bination of two 
β′s. Error estimation as the word connotes, is the process of using statistical techniques to 
determine the error of a statistical model.While fuzzy regression is a fuzzy variation of classical 
regression[2]. It is divided into Tanaka possibilistic (LPP) approach and Celmins & Diamond 
least square approach also known as the distance approach but our interest in this study is the 
possibilistic approach (Tanaka) for error estimation in the geometric model [3]. The 
possibilistic fuzzy geometric regression is a statistical method that combines the fuzzy logic and 
non-linear regression techniques to model data that is char- acterized by uncertainty and 
imprecission[4].  
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In this study,we wish to estimate the error of non-linear geometric data set and we may employ 
the knowledge of triangular fuzzy number (TFN) as we will be using the Tanaka[5] approach. 
This method assumes that components of the established membership function of the triangular 
fuzzy are symmetric i.e the left spread equals the right spread, where the output may be written 
as; 
 

 
 
2. ERROR ESTIMATION OF THE ORDINARY REGRESSION 
 
Ordinary Least Square regression, often called linear regression, is a common technique for estimating 
coefficients of linear regression equations which de- scribes the relationship between one or more 
independent quantitative variables and a dependent variable (simple or multiple linear regression)[6]. 
Least squares stand for the minimum square error (SSE). Maximum likelihood and generalized method 
of moments estimator are alter- native approaches to OLS. In the case of a model with p explanatory 
variables, the OLS regression model writes 
 

 
 
where Y is the dependent variable, β0, is the intercept of the model, Xj corre- sponds to the jth 
explanatory variable of the model (j = 1 to p) and ε is the random error with expectation 0 and variance 
σ2.In the case where there are n observations, the estimation of the predicted value of the dependent 
variable Y for the ith observation is given by: 
  

 
Error Term: An error term is a residual variable produced by a statistical or mathematical model, which 
is created when the model does not fully represent the actual relationship between the independent 
variables and the dependent variables[7]. As a result of this incomplete relationship, the error term is 
the amount at which the equation may differ during empirical analysis. The er- ror term is also known 
as the residual, disturbance, or remainder term, and is variously represented in models y the letters 
e, ε, or u. 
 
3. GEOMETRIC REGRESSION 
 
A regression model provides a function that descries the relationship between one or more 
independent variables and a response, dependent, or target vari- able. For example the relationship 
between height and weight may be described by a linear regression model[2].  In the geometric 
regression, the mean of the y is determined by the exposure time t and a set of k regressor variables 
(the x’s). The expression relating these quantities is; 
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3.1 Possibilistic Fuzzy Geometric Regression 
 
The possibilistic fuzzy geometric regression is a statistical method that combines the fuzzy logic and 
non-linear regression techniques to model that is character- ized by uncertainty and imprecision[3]. 
In this paper, we attempt to estimate the error of a possibilistic fuzzy geometric regression with a 
symmetric triangular fuzzy number(STFN) coefficients using the possibilistic approach where the data 
is first transformed into a fuzzy set membership fuction( Using the basic knowledge of triangular fuzzy 
number). 
 
4. THE LPP FORMULATION 
 
The LPP technique was first introduced in 1930 by Russian mathematician Leonid Kantorovich[9] in 
the field of manufacturing schedules and by American economist Wassily Leontief[9] in the field of 
economics. These techniques were heavily adopted to solve problems related to transportation, 
scheduling, allo- cation of resources, etc. The elements of a basic linear programming problem 
includes: 
 

 Decision Variables: They are unknown quantities that are expected to be estimated as an 
output of the LPP solution. 

 Objective Function: All linear programming problems aim to either maximize or minimize some 
numerical value. 

 Objective Function Coefficient:  Known as the amount y which the objective function value 
would change when one unit of a decision variable is altered. 

 
Suppose we wish to establish the membership function which must lie between the interval 
[0,1]before proceeding to minimize the spreads subjected to the constraints obtained from the 
membership functions. 
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Fig.1 Triangular Fuzzy Coefficients 

 
The diagram above is called the triangular fuzzy number. As indicated, the features of the TFN are its 
mode or center(M), its left and right spreads(M-cj, M+cj) and its supports (cj’s). when the two spreads 
are equal,the triangular fuzzy number is known as a symmetric triangular fuzzy number (STFN). The 
basic idea of Tanaka approach often referred to as possibilistic regression is to minimize the fuzziness 
of the model by minimizing the total spread of the fuzzy coefficients subjected to the constraints[10], 
which in our own case will be formed from the data set linearized using geometric transformation. 
The purpose of this article is to derive a model ad estimate the error of a non- linear data set using 
Tanaka possibilistic approach. 
 
where: 
m-cj= left spread 
m+cj= right 
spread m= center 
cj= supports 

 

from the basic knowledge of triangular fuzzy, we can form a membership function µ(x) such 
that the spread is subjected to the constraints obtained from _(x)A . 
From _g(1), 
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Now, let us consider a non-linear geometric data set by first linearizing and then substituting into the 
spread and constraints above. 
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4.1. Derivation and numerical illustration of Geometric fuzzy regression. 
We wish to transform a fuzzy data which is characterized by a high level of uncertainty. In this data set, 
the explanatory variables (x) cannot be used to predict the response variable (y). However, the 
transformation is illustrated below. 
 
log(y) = log(a) + βlog(x) 
 

 
 
Table 1: Geometric transformation of fuzzy values 
X Y log(X) log(Y) 
1.37 5285.55 0.3148 8.5727 
2.75 19.02 1.0116 2.9455 
3.82 1.77 1.3403 0.5709 
2.78 6.44 1.0225 1.8625 
1.78 5.41 0.5481 1.6882 
3.46 23.44 1.2413 3.1455 
3.36 562.34 1.2119 6.3321 

 
Recall: 
Our aim is to obtain an objective function and a constraint which we would resolve into a linear 
programming problem. For the constraints, we shall sum all X values characterized by uncertainty in 
table(1) above. 
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For the constraints, we introduce the h-certain factor which balances the spreads of the triangular 
fuzzy number. Now, let the h-certain factor (h=0.1). So that, 
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We thereby standardize the constraints by adding slacks for the less than constraints and reducing 
surplus for the greater than constraints(with additional variable) as seen below: 
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Haven standardize the above constraints, the next step is to proceed y combining the objective 
function in (7) with the standardized constraints so that we may have a linear programming problem 
with a single objective function and 14 constraints (because we are considering 7 observations only). 
Hence, our LPP is of the form: 
 
Z = min[c0 + 19:32cj ]; j = 1 
 
subjected to: 
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We resolve using the Tora software. hence, the values of the center and 
spreads of the membership function (m0, m1, c0, c1, ) are given by: 
 
m0 = 0, m1 = 3.5418, c0 = 4.2506, c1 = 0 

 
where the minimized value of the objective function on the spread is: 

 
Z = 4.2506 
 
Hence, the TFN coefficients are as follows: 
Ã0  = [0; 4.2506, 4.2506]  

Ã1  = [3.5418; 0, 0] 
If the Fuzzy regression model is given by: 

 

Ỹ   = Ã0  + Ã1X1  ·························································································································································································································································································································· (10) 
We substitute the transformed values of X’s from table(1) into equation 
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7

(10) to obtain our predicted Ỹ  which will be converted into crisps fuzzy 
values. 
Ỹ   = [0; 4.2506, 4.2506] + [3.5418; 0, 0](0.3418) 
Ỹ1  = [1.1149586; 4.2506, 4.2506] 
In summary: 

 
Y2 = [3.58288; 4.2506, 4.2506] 

 
Y3 = [4.74707; 4.2506, 4.2506] 

 
Y4 = [3.62149; 4.2506, 4.2506] 

 
Y5 = [1.941261; 4.2506, 4.2506] 

 
Y6 = [4.39644; 4.2506, 4.2506] 

 
Y7 = [4.29231; 4.2506, 4.2506] 
Then  the  value  of  Ỹ low is converted to fuzzy crisp values using the formula be- 
Y = a + 1 (m), so that: 

 
Y1 = 1.1149586 + 1 (4.2506) 

 
Y1 = 1.722187 

 
Similarly, the predicted values are presented below: 

 
Y2 = 4.19011 

 
Y3 = 5.354299 

 
Y4 = 4.228719 

 
Y5 = 2.5484896 

 
Y6 = 5.00367 

 
Y7 = 4.89954 

 

We  proceed  to  estimate  the  error  by  taking  the  difference  of  the  predicted  Ỹ j and the 
observed yj. in summary; 
 
ej  = ( Yj − yj), j = 1, 2, · · · , n 
 
 
 
 



Journal, Advances in Mathematical & Computational Sciences 
 Vol.  11    No.  1, March, 2023

www.isteams.net/mathematics-computationaljournal
 

 
 

 
 

 
  
 
 
 
 

88 
 
 

j

Table 2: Error of GFR model with h=0.1 

 
 

In this paper we have estimated the error of a geometric data set, we 
may wish to estimate the error of the data set using the ordinary 
regression model so as to draw conclusion from former. 

 
5. Numerical illustration 
 
Table 3: Observed Non-Linear Data 

 
. The model is given by: 
 

Y = α + βX 
 

By computation, we obtain the slope and intercept: 
 
α = 4495.835605, β = −3805.197654 
 
Hence the model: 
Y = 4495.835605 - 3805.197654X 
 
In summary, the error estimates are gotten by squaring the difference of each 
estimated Ỹ   and the observed y values i.e e2 as demonstrated in the table below; 
 

sxj y∗
j
 Estimated Yj ej e2 

j 

1.37 5285.55 1.722187 -5283.83 279188859.47 
2.75 19.02 4.19011 -14.82989 219.92563 
3.82 1.77 5.3543 3.58429 12.84719 
2.78 6.44 4.22872 -2.21128 4.88976 
1.78 5.41 2.54849 -2.86151 8.18824 
3.46 23.44 5.00367 -18.43633 339.89826 
3.36 562.34 4.89954 -557.44046 310739.8664 

    279500185.1 

X Y 
1.37 5285.55 
2.75 19.02 
3.82 1.77 
2.78 6.44 
1.78 5.41 
3.46 23.44 
3.36 562.34 
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5.1 Error Estimates 
 

 

Table 3: Error of Ordinary Regression Model. 

 
6. CONCLUSION 
 
The geometric fuzzy regression model derived is used to estimate the error of a non-linear data 
set and from observation it is more compact and performed better than the traditional regression 
as presented above. Using the fuzzy geometric model indicates the error accumulated is 
(279500185.1). While using the ordinary regression model, the error accumulated is 
(368945153.6) which is much larger than the former. Hence it is safe to say that the fuzzy 
geometric regression minimize error of a non-linear data set and performs better than the 
traditional linear regression. 
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