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                ABSTRACTABSTRACTABSTRACTABSTRACT    

 
In this study, differential transform method (DTM) is employed to investigate free vibration of 

uniform shear beams with constant shear distortion and constant stiffness resting on Winkler 

foundation DTM is an efficient technique for the solution of problems defined by linear or 

non-linear differential equations. This research shows that DTM is an effective method for free 

vibration analysis of uniform shear beam with constant shear distortion and constant stiffness 

resting on Winkler foundation. The model equation is obtained and solved numerically using 

DTM, tabular and graphical results are presented for the natural frequencies and mode shapes. 

 

KeywordKeywordKeywordKeywordssss: Winkler Foundation, Shear Beam, Differential Transform Method. 

 

    
1.1.1.1. INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    

 

Beams on elastic foundation model is widely used in the formulation of practical applications in 

Geo-technical engineering. For practical applications, the lateral stability and dynamic 

behaviour of Shear beam-columns, Shear beams, and Shear building are of great importance in 

structural and earthquake engineering. The vibration and seismic responses of Shear beam and 

framed structures modelled as a shear building have been studied by many researchers and 

treated extensively in the technical literature by Thomson (1972), Belvins (1986), Berg (1989), 

Paz (1990), Clough(1996) et al., among many others using different methods, mainly matrix 

analysis and lumped masses. Free vibration of shear beams with finite rotatory inertia was 

studied by X-F(2011) et al., non-classical modes of vibration of shear beams was carried out by 

J.Dairo Aristizabal-Ochoa (2004) and Exact solutions of free vibration shear type structures was 

studied by Q.S Li (2001). 
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An exact formulation of the beam problem was first investigated in terms of general elasticity 

equations by Pochammer (1876) and Chree(1889). They derived the equations that describe a 

vibrating solid cylinder. However, it is not practical to solve the full problem because it yields 

more information than usually needed in applications. Therefore, approximate solutions for 

transverse displacement as a solution. The Euler-Bernoulli beam theory, sometimes called the 

classical beam theory, Euler beam theory, Bernoulli beam theory or Bernoulli-Euler beam theory, 

is the most commonly used because it is simple and provides reasonable engineering 

approximations for many problems. However, the EulerBernoulli model tends to slightly 

overestimate the natural frequencies. This problem is exacerbated for the natural frequencies of 

the higher modes. Also, the prediction is better for slender beams than non-slender beams. 

 

The shear beam models adds shear distortion to the Euler-Bernoulli model. It should be noted 

that this is different from the pure shear model which includes the shear distortion and rotary 

inertia only or the simple shear beam which includes the shear distortion and lateral displacement 

only. Neither the pure shear nor the simple shear model fits our purpose of obtaining an 

improved model to the Euler-Bernoulli model because it exclude the most important factor, the 

bending effect. By adding shear distortion to the Euler-Bernoulli beam, the estimate of the natural 

frequencies improves considerably. There are several foundation models such as Winkler, 

Pasternak, Vlasor etc. that have been used in the analysis of beam vibration. The most used 

foundation problems is the Winkler foundation model in which the soil is modelled as uniformly 

distributed linear elastic vertical springs which produce distributed reaction in the direction of the 

deflected beam. There are also different beam models theory, the mostly used model is 

EulerBernoulli beam which is suitable for slender beams.  

 

If the beam is short and thick then, Timoshenko beam has to be performed in these analysis. 

Vibration and dynamic buckling of shear beam on elastic foundation under moving load was 

studied by Seong-Minkim (2005) et al. using Fourier transformation method. Static and dynamic 

stability of uniform Shear building under generalized boundary condition was analyzed by J.Dario 

Aristizabal-Ochon (2004). Avramids(2006) et al. analysed beam bending problem on three-

parameter elastic foundation. De Rosa(1995) analysed free vibration of Timoshenko beams on 

two-parameter elastic foundation. El-Moushy (1999) investigated fundamental frequencies of 

Timoshenko beams on Pasternak foundation.Also N.R Naidu(1995) et al. analysed the vibration 

of initially stressed uniform beams on a two-parameter elastic foundation. Seon M. Hun (1999) et 

al. analysed the dynamics of transversely vibrating beams using four engineering theories. Mutman 

U(2013) analysed free vibration of an Euler beam of variable width foundation using homotopy 

perturbation method. 

 

The Winkler-model (one-parameter model) which has been originally developed for the analysis 

of rail road tracks, has credit for its mathematical simplicity. However, one of the most important 

deficiencies of the Winkler foundation model is that a displacement continuity appears between 

the loaded and the unloaded part of the foundation surface. The mechanical modelling of the 

foundation using the Pasternaks foundation converges to the wrinkle foundation if the second 

parameter in Pasternaks foundation is neglected. In this study, free vibration of Shear beam 

resting on a one-parameter elastic foundation (Winkler) is considered. Differential transform 

method is applied to determine the natural frequencies and the mode shapes have also been 

investigated.  

 

V��� 5  ��� 4  Dec� 2017  



 

 

 

 

 

214 

Although, Seon M.Han(1999) et al. gave full development/analysis for the transverse vibrating 

uniform beam using Shear beam which was not placed on an elastic foundation as an example, 

the present study deals with a one-parameter model foundation whose shear distortion term and 

the stiffness of the foundation element were varied. 

    

2222. . . . SHEAR BEAM MODEL ON A ONESHEAR BEAM MODEL ON A ONESHEAR BEAM MODEL ON A ONESHEAR BEAM MODEL ON A ONE----PARAMETER ELASTIC FOUNDATIONPARAMETER ELASTIC FOUNDATIONPARAMETER ELASTIC FOUNDATIONPARAMETER ELASTIC FOUNDATION    

 

If a shear beam resting on a one parameter elastic (Winkler) foundation, the governing 

differential equation for the system without damping effect and if the effect of rotatory inertial is 

neglected and only the effect of shear distortion on the dynamic deflection of beam is considered 

and its subjected to a static axial force can be written in a Cartesian coordinate system {x,y} as 

 

 (1) 

 

where m = ρA is the mass of the beam per unit length, k is the stiffness of the foundation per unit 

length, P is the axial force (positive and negative signs represented tension and compression), E is 

Youngs Modulus of elasticity, I is the second moment of inertial, y(x,t) is the vertical displacement 

of the beam, φ(x,t) is the rotation of the beam, and S = kiGA is the shear distortion of the beam 

where Ki 
is the effective shear area and G is the shear modulus of the beam. Due to the end 

conditioned of the beam, different boundary conditions have to be imposed to obtain the desired 

solution. 

 

Some of these conditions are as follows: 

 

(a) For Hinged-Hinged(Simply-Supported) beam the end conditions are; 

(b)  

  (2) 

 

(b) For Clamped-Clamped beam the end conditions are; 

 

 φ = 0,y = 0 at x = 0,L 
(c) For Clamped-Free(Cantilever) beam the end conditions are; 

(3) 
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3333. . . . FREE VIBRATION ANALYSISFREE VIBRATION ANALYSISFREE VIBRATION ANALYSISFREE VIBRATION ANALYSIS    

 

Now free vibration analysis of the uniform shear beam on a one parameter elastic (Winkler) 

foundation is discussed as follows: The solution is separated due to its variables as given in the 

following form to formulate the analysis of the presented problem  

 

 
 

Where ω is the circular frequency for the vibration Substituting equation (16) into the governing 

equation, the equation of motion becomes as follows: For the first equation in equation in the 

governing equation we have, 

 
Which can be further simplified as; 

 
                     

Also for the second equation in equation in the governing equation we have, 

  

 
 

 

Equation (9) can be further simplified as; 

        
Without loss of generality the following dimensionless quantities can be introduced; 

   

 
Inserting equation (11) into equation (8) we have, 

 
 

We further simplify equation (12) to become, 
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Where

 
 

Inserting equation (11) into equation (10) we have, 

 

  
 

We further simplify equation (15) to become, 

  
 

Where 

 
 

The boundary conditions in view of equation (6) now becomes; (i) For Hinged-Hinged 

(Simply-Supported) end; 

  

 
 

(ii) For Clamped-Clamped end;  

  

 (iii) For Clamped-Free(Cantilever) end; 

 

        

 
 

Table 1 Properties of a oneTable 1 Properties of a oneTable 1 Properties of a oneTable 1 Properties of a one----    parameter shear beamparameter shear beamparameter shear beamparameter shear beam----column on an Elasticcolumn on an Elasticcolumn on an Elasticcolumn on an Elastic    (Winkler) foundation(Winkler) foundation(Winkler) foundation(Winkler) foundation    

Young modulus of area moment of inertia 

EI 

363.35kN m1

 

Cross-Sectional area A 0.0097389 m2

 

Stiffness of the foundation k Varying values-0,1.0MPa,10MPa and 50MPa 

Shear distortion S Varying values-10MN,15MN,20MN and 40MN 

Length L    1m 

Mass m    297.5kg/m 

Axial force P    0 

Density ρ    7830kg/m3
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4444. . . .     NUMERICAL TECHNIQUESNUMERICAL TECHNIQUESNUMERICAL TECHNIQUESNUMERICAL TECHNIQUES    

 

In this research we used the differential transform method (DTM) which is a numerical method 

based on Taylors expansion. This method constructs an analytical solution in form of a 

polynomial. Unlike the traditional high order Taylor’s series method which requires a lot of 

symbolic computations, the differential transform method is an analytical solution in the form of a 

polynomial. But it is different from Taylor series method that requires computation of the high 

order derivatives. The differential transform method is an iterative procedure that is described by 

the transformed equations of original functions for solution of differential equations. Also, the 

boundary conditions of the system are transformed into a set of algebraic equations in term of the 

differential transform of the original functions and the solution of this algebraic equations give the 

desired solution of the problem. Consider the functions w(x) which is analytic in a domain D and 

x = x0 represent any point in D. the function is represented by a power series whose centre is 

located at x0. The differential transform of the function w(x) is given as; 

 
  

Where w(x) is the original function and W(k) is the transformed function. The inverse 

transformation is defined as: 

  
Combining equations (21) and (22) give 

  
The fundamental mathematical operation performed by differential transform method and 

boundary conditions are given in the tables 2 and 3 below which was used by Alev Kacar[2011] et 

al. in the free vibration analysis of beams on Winkler foundation by using differential transform 

method. 

    

Table 2: The fundamental operations of DTM.Table 2: The fundamental operations of DTM.Table 2: The fundamental operations of DTM.Table 2: The fundamental operations of DTM. 

Original function Transformed function 

w(x) = g(x) 6= h(x) W(k) = G(k) ± H(k) 

W(x) = λg(x) W(k) = λG(k) 

 
W(k) = (k + 1)G(k + 1) 

 
W(k) = (k + 1)(k + 2)· · ·(k + m)G(k + m) 

w(x) = 1 W(k) = ∂(k) 

w(x) = g(x)h(x) 
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Table 3: Theorems for differential transform method for boundary conditions.Table 3: Theorems for differential transform method for boundary conditions.Table 3: Theorems for differential transform method for boundary conditions.Table 3: Theorems for differential transform method for boundary conditions. 

x = 0 x = 1 

Original B.C Transformed B.C  Original B.C Transformed B.C 

W(0) = 0 W(0) = 0  W(1) = 0  

 
W(1) = 0 

 

 
W(2) = 0 

 

 
W(3) = 0 

 
    

 

5555. . . . DTM FORMATIONDTM FORMATIONDTM FORMATIONDTM FORMATION    

 

Taking the differential transforms of equation (13), we have 

 
We got the below recurrence relation 

 

 

 
Also taking the differential transform of equation (15), we have 

 

 

 

We got the below recurrence relation 

 

 
 

Several iterations are carried out during the analysis procedure and three boundary conditions for 

each case are rewritten by using the solution for displacement of the beam. Each boundary 

condition produces an equation containing two unknowns due to the initial approximation. These 

boundary conditions in non-dimensionless form are; 

 

(i) Hinged-Hinged (Simply-Supported) end 

 

   

 
 

(ii) Clamped-Clamped end 
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(iii) Clamped-Free(Cantilever) end 

 

 
 

 

 

  

The corresponding differential transforms for the boundary conditions (28) to (33) are given in 

table (3). Hence, two equations in two unknowns may be written with respect to the boundary 

conditions of the problem. These equations can be represented in matrix form as follows; 

  
Where AT 

= A,B 

 

For a non-trivial solution, determinant of coefficient matrix must be zero. Determinant of the 

coefficient matrix yields a characteristic equation in terms of ω. Positive real roots of this equation 

are the normalised free vibration frequencies for the case considered. 

 

 

6666. . . . NUMERICAL RESULTS FOR CASE ANUMERICAL RESULTS FOR CASE ANUMERICAL RESULTS FOR CASE ANUMERICAL RESULTS FOR CASE A    

 

A number of case studies are carried out with respect to parameter S that lead to a variation of 

Shear distortion of the beam with the aid of mathematical computational software (MAPLE 18). 

The results are in tables 4-6 below, and mode shapes of the cases are also represented graphically. 

    

TABLE 4: Free Vibration Frequencies for HingedTABLE 4: Free Vibration Frequencies for HingedTABLE 4: Free Vibration Frequencies for HingedTABLE 4: Free Vibration Frequencies for Hinged----Hinged (Hinged (Hinged (Hinged (SimplySimplySimplySimply    Supported) End resting on Supported) End resting on Supported) End resting on Supported) End resting on 

Winkler Foundation with varying Shear distortion at constant stiffness of the foundatioWinkler Foundation with varying Shear distortion at constant stiffness of the foundatioWinkler Foundation with varying Shear distortion at constant stiffness of the foundatioWinkler Foundation with varying Shear distortion at constant stiffness of the foundation n n n 

(K=77.17MPa)(K=77.17MPa)(K=77.17MPa)(K=77.17MPa) 

S 10 15 20 40 

ω1 17.55915917 14.97316049 13.67336632 11.68998207 

ω2 47.16791677 44.58184603 43.28195044 41.29788666 

ω3 96.51592493 93.92980413 92.62995641 90.64743090 
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Figure 1Figure 1Figure 1Figure 1    

 

The first three natural frequencies for hinged-hinged (simply-supported) end beam on Winkler 

foundation are presented in table 4, it is observed that the value for each frequency decreases as S 

increases and as end conditions of the beam differs. The natural modes at the first frequency ω1, 

ω2, ω3, describes the situation in which the Hinged-Hinged (simply-supported) end beam 

oscillates at those frequencies. 

    

TABLE 5: Free Vibration Frequencies for ClampedTABLE 5: Free Vibration Frequencies for ClampedTABLE 5: Free Vibration Frequencies for ClampedTABLE 5: Free Vibration Frequencies for Clamped----Clamped End resting on Winkler Foundation Clamped End resting on Winkler Foundation Clamped End resting on Winkler Foundation Clamped End resting on Winkler Foundation 

with varying Shear distortion at constant stiffness of the foundawith varying Shear distortion at constant stiffness of the foundawith varying Shear distortion at constant stiffness of the foundawith varying Shear distortion at constant stiffness of the foundation(K=77.17MPa)tion(K=77.17MPa)tion(K=77.17MPa)tion(K=77.17MPa)    

S 10 15 20 40 

ω1 17.58139355 15.00645693 13.71768845 11.77804327 

ω2 47.16795507 44.58193016 43.28210275 41.29849203 

ω3 96.51837568 93.93327886 92.63491449 90.65574068 
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Figure 2Figure 2Figure 2Figure 2    

 

The first three natural frequencies for clamped-clamped end beam on Winkler foundation are 

presented in table 5, it is observed that the value for each frequency decreases as S increases and 

as end conditions of the beam differs. The natural modes at the first frequency ω1, ω2, ω3, 

describes the situation in which the clamped-clamped end beam oscillates. 

    

TABLE 6: Free Vibration Frequencies forTABLE 6: Free Vibration Frequencies forTABLE 6: Free Vibration Frequencies forTABLE 6: Free Vibration Frequencies for    ClampedClampedClampedClamped----Free (Free (Free (Free (Cantilever) End resting on Winkler Cantilever) End resting on Winkler Cantilever) End resting on Winkler Cantilever) End resting on Winkler 

Foundation with varying Shear distortion at constant stiffness of Foundation with varying Shear distortion at constant stiffness of Foundation with varying Shear distortion at constant stiffness of Foundation with varying Shear distortion at constant stiffness of thethethethe 

FoundationFoundationFoundationFoundation    ((((K=77.17MPa)K=77.17MPa)K=77.17MPa)K=77.17MPa) 

S 10 15 20 40 

ω1 10.17197641 7.593473258 6.301164853 4.347625521 

ω2 29.81859187 27.19442080 25.85685651 23.72630622 

ω3 69.33383389 66.72770030 65.40784593 63.35220948 
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Figure 3Figure 3Figure 3Figure 3    

 

The first three natural frequencies for Clamped-Free (Cantilever) end beam on Winkler 

foundation are presented in table 6, it is observed that the value for each frequency decreases as S 

increases and as end conditions of the beam differs. The natural modes at the first frequency ω1, 

ω2, ω3, describes the situation in which the Clamped-Free (Cantilever) end beam oscillates. 

    

7777. . . . Numerical Results Numerical Results Numerical Results Numerical Results forforforfor    Case BCase BCase BCase B    

 

A number of case studies are carried out with respect to parameter K that lead to a variation of 

the stiffness of the foundation of the beam with the aid of mathematical computational software 

(MAPLE 18). The results are in tables 7-9 below, and mode shapes of the cases are also 

represented graphically.  

 

TABLE 7: Free Vibration Frequencies for HingedTABLE 7: Free Vibration Frequencies for HingedTABLE 7: Free Vibration Frequencies for HingedTABLE 7: Free Vibration Frequencies for Hinged    Hinged(SimplyHinged(SimplyHinged(SimplyHinged(Simply----Supported) End resting on Supported) End resting on Supported) End resting on Supported) End resting on 

Winkler Foundation with varying stiffness of the foundation at constant shear Winkler Foundation with varying stiffness of the foundation at constant shear Winkler Foundation with varying stiffness of the foundation at constant shear Winkler Foundation with varying stiffness of the foundation at constant shear 

distortion(S=10MN)distortion(S=10MN)distortion(S=10MN)distortion(S=10MN) 

K 0 1.0 10 50 

ω1 9.842159257 9.942159244 10.84215926 14.84215924 

ω2 39.45091560 39.55091546 40.40091532 44.45091620 

ω3 88.79890591 88.89891660 89.79890105 93.79890439 
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Figure 4Figure 4Figure 4Figure 4    

 

The first three natural frequencies for hingedThe first three natural frequencies for hingedThe first three natural frequencies for hingedThe first three natural frequencies for hinged----hinged (hinged (hinged (hinged (simplysimplysimplysimply----supported) end beam onsupported) end beam onsupported) end beam onsupported) end beam on Winkler 

foundation are presented in table 7, it is observed that the value for each frequency increases as K 

increases and as end conditions of the beam differs. The natural modes at the first frequency ω1, 

ω2, ω3, describes the situation in which the Hinged-Hinged (simply-supported) end beam 

oscillates at those frequencies. 

    

TABLE 8: Free Vibration Frequencies for ClampedTABLE 8: Free Vibration Frequencies for ClampedTABLE 8: Free Vibration Frequencies for ClampedTABLE 8: Free Vibration Frequencies for Clamped----Clamped End resting on Winkler Foundation Clamped End resting on Winkler Foundation Clamped End resting on Winkler Foundation Clamped End resting on Winkler Foundation 

with varying stiffness of the foundation at constant shear with varying stiffness of the foundation at constant shear with varying stiffness of the foundation at constant shear with varying stiffness of the foundation at constant shear distortion (S=10MN)distortion (S=10MN)distortion (S=10MN)distortion (S=10MN)    

 

K 0 1.0 10 50 

ω1 9.864393634 9.964393613 10.86439364 14.86439356 

ω2 39.45095313 39.55095358 40.45095372 44.45095582 

ω3 88.80141095 88.90140449 89.80138435 93.80137713 
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Figure 5Figure 5Figure 5Figure 5    

 

 

The first three natural frequencies for clamped-clamped end beam on Winkler foundation are 

presented in table 8, it is observed that the value for each frequency increases as K increases and 

as end conditions of the beam differs. The natural modes at the first frequency ω1, ω2, ω3, 

describes the situation in which the clamped-clamped end beam oscillates. 

    

TABLE 9: Free Vibration Frequencies forTABLE 9: Free Vibration Frequencies forTABLE 9: Free Vibration Frequencies forTABLE 9: Free Vibration Frequencies for    ClampedClampedClampedClamped----Free (Free (Free (Free (Cantilever) End resting on Winkler Cantilever) End resting on Winkler Cantilever) End resting on Winkler Cantilever) End resting on Winkler 

Foundation with varying stiffness of the foundation at constant shFoundation with varying stiffness of the foundation at constant shFoundation with varying stiffness of the foundation at constant shFoundation with varying stiffness of the foundation at constant shearearearear    DistortionDistortionDistortionDistortion    (S=10MN)(S=10MN)(S=10MN)(S=10MN) 

K 0 1.0 10 50 

ω1 2.454976439 2.554976441 3.454976440 7.454976452 

ω2 22.10159128 22.20159120 23.10159127 27.10159100 

ω3 61.61683730 61.71684223 62.61684148 66.62353418 
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Figure 6Figure 6Figure 6Figure 6    

    

The first three natural frequencies for Clamped-Free (Cantilever) end beam on Winkler 

foundation are presented in table 9, it is observed that the value for each frequency increases as K 

increases and as end conditions of the beam differs. The natural modes at the first frequency ω1, 

ω2, ω3, describes the situation in which the Clamped-Free (Cantilever) end oscillates. 

    

    

 

 

 

 

 

 

 

 

 

 

 

V��� 5  ��� 4  Dec� 2017  



 

 

 

 

 

226 

8888. . . . SUMMARY AND CONCLUSIONSUMMARY AND CONCLUSIONSUMMARY AND CONCLUSIONSUMMARY AND CONCLUSION    

 

In the study, DTM was used for the Free Vibration analysis of Shear beam with constant Shear 

rotation and constant stiffness on Winkler Foundation. To represent a Variation in the Shear 

distortion a horizontal Shear beam with varying shear distortion and varying stiffness of the 

foundation is considered. The analysis were expanded for various cases. DTM also produced 

reasonable results for the vibration of constant shear distortion and constant stiffness of the 

foundation shear beams on Winkler Foundation showing the efficacy of the method. In the case 

of vibration in constant shear distortion and constant stiffness of the foundation, the governing 

equation becomes an equation with constant coefficients and it is not easy to obtain analytical 

solutions for these type of problems. However, DTM produced very good approximations after 

performing some iterations with the method. Also normalized mode shape of Hinged-Hinged 

(Simply-Supported) End, Clamped-Clamped End and Clamped-Free (Cantilever) End with 

constant shear distortion and constant stiffness of the foundation are investigated. 

We also discovered that as we increase the values of shear distortion parameter, the value of 

the natural frequency decreases at each boundary conditions we considered. Also as we increase 

the stiffness of the foundation the natural frequency increases at each boundary conditions we 

considered. 
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