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ABSTRACTABSTRACTABSTRACTABSTRACT    

    

Problem statement: The paper reviews the combustion processes that occur in the interior of the earth 

during Gravitational Differentiation GD and Radioactive Decay RD processes which  are characterized by 

ignition and explosion. The paper therefore examine the effect of flame thickness on maximum 

temperature of the reaction during the processes.   The partial differential equation governing the model 

together with the boundary conditions, is transformed into ordinary differential equation by thin flame 

technique. The resulting equation  is investigated for the effects of some sensitive factors such as activation 

energies ratio, flame thickness, gravitational differentiation and radioactive decay on maximum temperature 

of the reaction which occurs in the earth interior. The criteria for the existence of unique solution of the 

resulting equations are established. Numerical results were obtained by shooting method.  The results show 

that flame thickness, activation energies ratio, gravitational differentiation and radioactive decay have 

appreciable effects on maximum temperature of the reaction. In particular, regulating the flame thickness 

has helpful implication on the reactions in terms of heat release.  
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1.  1.  1.  1.  INTRODUCTION INTRODUCTION INTRODUCTION INTRODUCTION     

 

Most of our contributions in combustion theory and modelling laid emphasis on heat release during the 

reaction [1-3]. This is basically required for safety and industrial purposes.  Literatures have shown that in 

the interior of the earth, there are two major sources of heat that constitute exothermic regimes; These are 

Gravitational Differentiation (GD) and decay of radioactive elements [4]. Literatures further established that 

in the early stages of planetary build up, the earth was much less compact than what it is today. This build-

up  process led to more gravitational attractions which force the earth to contract into smaller volume. 

During the gravitational differentiation, the potential energy generated becomes heat energy due to viscous 

dissipation. Also, radioactive elements are inherently unstable; The unstable Uranium isotope (Uranium-

238) slowly decay to Lead - 206 and the radioactive decay processes continue.  They break down over time 

to more stable forms and release intense heat (and may include flame) as by-product of the chain reaction. 

This heat is continually radiated outward through several concentric shells that form the solid portion of the 

planet.  

 

The work done by [4] explained the above processes in the earth interior  and  gave more understanding 

that thermal processes that occur in the earth's interior differ from characteristic thermal explosion but they 

are analogous. Other contributions by [5-7] also established that although multiple steps are involved in 

reaction but two major steps are basically involved. Those steps include chemical decomposition and 

combustion process.   Our previous work on thermal explosion showed that explosion generally results 

from two exothermic reactions; one step follows the other in very rapid succession depending on the 

activation energies of the reactions [9]. [10]  presented some remarks on thermal explosion in the early 

evolution of the earth. The paper considered the unsteady and steady state energy equation associated with 

the earth evolution, and establish the criteria for the occurrence of thermal runaway.    

 

[11] also investigated the effect of radioactive heat source and gravitational differentiation on unsteady state 

thermal explosion in the evolution of the earth. The resulting energy equation was solved by shooting 

method. The authors  showed that critical temperature which signifies the onset of thermal instability due to 

gravitational differentiation depends linearly on the intensity of radioactive heat source. We were able to 

show that even when the thermal conductivity due to gravitational differentiation and ordinary thermal 

conductivity are comparable, a steady thermal solution exists under specified conditions. 

 

[12] revisited the theory of evolution of the earth. The effect of gravitational differentiation in the separation 

of heavier material forming the earth's core from Silicates in the extended and heated area was studied. 

Previous literatures focused on small and large thermal conductivities but we focused on all orders of 

thermal conductivity. The numerical solution of the energy equation was provided by shooting method. 

The previous results in the literatures were special cases of the new results in that paper.  Our contributions 

on heat transfer were not restricted to [13-14] alone. [15] investigated the effect of activation energies on 

thermal explosion that occurs in the interior of the earth during gravitational differentiation and decay of 

radioactive substances. The unsteady, steady and homogeneous reactions were considered and studied. 

Theorems on the existence of unique solution were formulated and proved. Results on blow-up were 

obtained, and the criteria for a blow up to occur in the chain reaction, were established. The analytical and 

numerical results showed that activation energies have different implications in terms of  heat release. 
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While our contributions on safety and modelling [16-18] continue, [19] also examined thermal explosion 

arising from time-dependent gravitational differentiation and radioactive decay in the Earth's Interior. He 

considered the work done by [15] when the gravitational differentiation and radioactive decay parameters 

are time dependent. The paper was able to establish that the problem has a unique solution and the 

activation energies ratio have appreciable effects on the reactions in terms of heat release.   This paper 

therefore, considers [15, 18] and uses thin flame technique to reduce the partial differential equation into 

ordinary differential equation and to also introduce flame thickness parameter into the model in order to 

study its effect on the maximum heat release. 

 

2. 2. 2. 2. MATERIAL AND METHODSMATERIAL AND METHODSMATERIAL AND METHODSMATERIAL AND METHODS    

 

Following [15,18], the dimensionless thermal conductivity equation governing the generation of heat by two 

major sources; GD and the decay of radioactive elements,  is given by  
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together with the initial and boundary conditions 
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where the parameters are defined as; 

θ   Non-dimensional temperature 

τ   Non-dimensional time variable 

ξ   Non dimensional space variable. 

eP   Péclet number 

α   Ratio of activation energies  

dΓ   Non dimensional term for Gravitational Differentiation 

rΓ   Non dimensional term for radioactive source 

The equation (1) subject to conditions (2), becomes 
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where  v  is the flame thickness. 

The equation (3) gives  
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and the above equation is now subject to conditions  

0)1(,0)1( =−=−− ττ vgvg            (6) 
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Case 1:Case 1:Case 1:Case 1:     ,1
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The equation (5) remains as 
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satisfying 0)1()1( =−=−− ττ vgvg                         (8) 

    

    

2.2 2.2 2.2 2.2 Existence of Unique SolutionExistence of Unique SolutionExistence of Unique SolutionExistence of Unique Solution    

Theorem 1:  Let D denote the region for which N≤≤ α0 , 11 1 ≤≤− y , 0P,,,,, >ΓΓ eodr nNv . Then 

problem (7) which satisfies conditions (8) and for which )1( τvg −−′ is fixed, has a unique solution . 
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satisfying the initial conditions 
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Remark: Remark: Remark: Remark: gλ  is guessed such that the boundary condition 0)1(2 =− τvy .    
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Theorem 2: Theorem 2: Theorem 2: Theorem 2: Let D denote the region for which N≤≤ α0 ,,,, 11 1 ≤≤− y , , , , 

,0 2 My ≤≤
*

3 gg y λλ −≤≤ ,,,, 0P,,,,,, >ΓΓ eodr nNMv . . . . The functions )3,2,1( =ig  are Lipschitz continuous 
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Proof: Proof: Proof: Proof:     
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i . Hence 3,2,1),,,( 321 =iyyyg i  are Lipschitz continuous and so problem (10) satisfying 

(11) is Lipschitz continuous. 

 

 Proof of theorem 1: The existence of Lipschitz constant in the proof of theorem 2 implies the existence of 

unique solution of problem (10) which satisfies (11). And this implies the existence of unique solution of 

problem (6) satisfying the conditions (7). 

    

Case 2:Case 2:Case 2:Case 2:   ,1

)1(

<<

+

n

g

eoeP

α

  

The equation (4) becomes  

0)1(

2

2

=Γ+Γ++ +
r

g
d e

d

dg
v

d

gd α

ηη
                    (12)  

satisfying the condition (8)  

The equation (12) is resolved into a system of equations as follows; 
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satisfying the initial conditions 
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3. 3. 3. 3. NUMERICAL COMPUTATION NUMERICAL COMPUTATION NUMERICAL COMPUTATION NUMERICAL COMPUTATION     

 

In this section,  numerical solutions of problems (7) and (12) satisfying conditions (8) are provided by using 

Runge-Kutta Shooting method. Computer programmes written in Pascal language, were used to solve 

problems (10) and (14) together with  conditions (11) and (15) respectively, and for which gλ  and zλ  are 

guessed such that the boundary condition 0)1(2 =− τvy . The numerical results obtained are presented in 

the  figures below. 

 

Case 1:Case 1:Case 1:Case 1:  ,1

)1(

>>

+

n

g

eoeP

α

. 

 

    
    

    



                                                                                                                                                               

    

 

47 

 
                    Vol. 5  No. 2, June  2017 

        

    
    

Figure 2: Temperature profile  for fixed  values of    α=1,  Γα=1,  Γα=1,  Γα=1,  Γd= 0.2, ΓΓΓΓr= 0.4, and for various values of v 

    

    
Figure 3: Temperature profile  for fixed  values of α=1,  Γα=1,  Γα=1,  Γα=1,  Γd= 0.2,  v= 0.01 and for various values of ΓΓΓΓr 
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Figure 4: Temperature profile  for fixed  values of α=1,  Γρα=1,  Γρα=1,  Γρα=1,  Γρ= 0.4,  v= 0.01 and for various values of ΓΓΓΓd 

    

 

Case 2:Case 2:Case 2:Case 2:  ,1
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Figure 5: Temperature profile  for fixed  values of ΓΓΓΓr = 0.4,  Γ= 0.4,  Γ= 0.4,  Γ= 0.4,  Γd= 0.2,  v= 0.01 and for various values of αααα    
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Figure 6: Temperature profile  for fixed  values of α=1,  Γα=1,  Γα=1,  Γα=1,  Γd= 0.2, Gr= 0.4, and for various values of v 

    

    

    
    

Figure 8: Temperature profile  for fixed  values of α=1,  Γρα=1,  Γρα=1,  Γρα=1,  Γρ= 0.4,  v= 0.01 and for various values of ΓΓΓΓd 
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Figure 8: Temperature profile  for fixed  values of α=1,  Γρα=1,  Γρα=1,  Γρα=1,  Γρ= 0.4,  v= 0.01 and for various values of ΓΓΓΓd 

    

    
    

Figure 9: Temperature profile  for fixed  values of ΓΓΓΓr = 0.4,  Γ= 0.4,  Γ= 0.4,  Γ= 0.4,  Γd= 0.2,  v= 0.01, αααα=1.0, showing  cases 1 and 2 
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4. 4. 4. 4. RESULTS AND DISCUSSION RESULTS AND DISCUSSION RESULTS AND DISCUSSION RESULTS AND DISCUSSION     

    

The paper examined the effects of flame thickness, and other sensitive factors such as  activation energy 

ratio, gravitational differentiation and radioactive decay, on maximum temperature of the reaction during 

thermal explosion that may occur in the earth interior.  

 

The model, was considered under the following cases;  

(i). Case 1:  1

)1(

>>

+

n

g

eoeP

α

 (heat transfer due to GD or thermal convection far exceeds the conductive 

heat transfer. )   Vityazev (2004),  and  

(ii). Case 2:  1

)1(

<<

+

n

g

eoeP

α

  the contrast of (i). 

 

Theorems establishing the criteria for the existence of unique solution of the resulting equations were 

formulated and proved. The proofs of theorems showed that the problems has a unique solution and the 

model  therefore represents a physical problem. The resulting systems of equations were solved numerically 

by shooting method.  

 

� Figures 1 and 5 showed that the activation energy ratio () has appreciable effects on maximum 

temperature of the reaction. As  increases, the maximum temperature also  rises.  

� Figures 2 and 6 showed that the flame thickness (v) has appreciable effects on maximum 

temperature of the reaction. A reasonable adjustment of v  produces maximum temperature of the 

reaction.  

� Figures 3 and 7 showed that the heat release from the radioactive decay process (r) has appreciable 

effects on maximum temperature of the reaction. A rise in r increases the maximum temperature 

of the reaction.  

� Figures 4 and 8 showed that the heat release during Gravitational Differentiation (d) from has 

significant effects on maximum temperature of the reaction. A rise in d increases the maximum 

temperature of the reaction.  

� Figure 9  showed the difference between  the two cases. The maximum temperature increases in 

case 1 when heat transfer due to GD or thermal convection far exceeds the conductive heat 

transfer. 

    

5. 5. 5. 5. CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION    

 

In conclusion, flame thickness and other sensitive factors have appreciable effects on maximum 

temperature of the reactions during thermal explosion that may occur in the interior of the earth. In 

particular, regulating the flame thickness will be helpful in terms of heat release. 
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