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ABSTRACT 
 
The unauthorized use of credit card information for fraudulent financial benefits by fraudsters without the 
knowledge of an unsuspecting users has become rampant due to financial inclusivity of financial institutions in 
their bid to reach both semi-urban and rural settlers. This in turn – has continued to ripple across the society 
with huge financial losses and lowered user trust implications for all cardholders. Thus, banks cum financial 
institutions are today poised to implement fraud detection schemes. 5-algorithms with(out) application of the 
synthetic minority over-sampling technique (SMOTE) were trained to assess how well they performed namely: 
Random Forest (RF), K-Nearest-Neighbor (KNN), Naive Bayes (NB), Support Vector Machines (SVM), and Logistic 
Regression (LR). Tested via flask, and integrated via streamlit as application programming interface on to various 
platforms – our experimental proposed RF ensemble performed best with an accuracy of 0.9802 after applying 
SMOTE; while LR, KNN, NB, SVM and DT yielded an accuracy of 0.9219, 0.9435, 0.9508, 0.5 and 0.9008 
respectively. Our proposed ensemble achieved F1-score of 0.9919; while LR, KNN, NB, SVM and DT yields 
0.9805, 0.921, 0.9125, and 0.8145 respectively. Results implies that proposed ensemble can be used with 
SMOTE data balancing technique for enhanced prediction for card fraud detection. 
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1. INTRODUCTION 
 
There exists inherently today, many challenges with banks reaching and being available to their many 
customers as ways to ease financial inclusivity and availability [1]. These issues have been mainly 
linked to coverage areas [2] of their infrastructure and the non-provision of services to customers in 
semi-urban/rural settlement [3]. To curb this, banks have ushered in agent banking today, as means 
to improve her coverage areas [4]. These too, have been eased with the adoption of wallet [5] and 
debit/credit card techs [6], [7] – allowing digi-pass authenticator-enabled access (code-sequence) that 
validates customer transactions over the banking platforms [8], [9] or wallet apps [10]; And thus, 
eased connectivity to their numerous customers, and promote the needed financial inclusivity [11]. 
Cards as issued by financial institutions have become the fulcrum that eases the payments for 
transactions in the form of goods cum services [12]–[14].  
 
Cards issued by banks to its holder [15] – are often a metallic, pocket-sized device that facilitates 
transaction with the device to ease manageability [16]. Its ease of mobility and the inherent 
convenience therein [17], has continued to ease its adoption as a frontier product platform for many 
transactions – and ushered it as the preferred pedestal for use in both offline cum online transactions 
by many of holders [18].  
 
With a great many exchange of goods and services for money across many platforms – our society 
today is submerged in large amount of transactions [19], [20] with banks, consequently becoming the 
third-party actors and a safe store to hold up such funds [21]. So, with their quest to reach many of 
her users across semi-urban and rural dwellings [22] – financial institutions have since adopted cards 
with its plethora of applications as the improved means and choice to accomplish such feat and 
solutions [23]. The increased acceptance of cards as preferred mode of payment across a variety of 
transaction platforms – have also, attracted adversaries with a great rise in the number of threats, 
successful attacks and fraudulent activities.  
 
This adoption of cards has eased cash mobility [24], usage in a variety of platforms, eased financial 
inclusivity [25], portability and eased accessibility. These inherent characteristics have continued to 
sponsor the adoption of card payment technologies. It will suffice to note that from 2017 and 2022 – 
finance crimes have experienced a global loss of over $342-billion [26]–[28]. Making it imperative 
and critical for financial institutions to advance efforts to enhance their fraud detection and prevention 
systems aimed at mitigating further losses to adversaries, who target the systems/schemes for 
personal, financial gains [29], [30]. 
 
With cards today as a secure mode of payments for transaction wherein goods and services are 
provided [31] – card-holders no longer need carry large amounts and thus, theft risk is very much 
reduced. But, surprisingly – digital frontier thefts has increased with adversaries stealing card-holder’s 
details for their personal gains via fraud, which results in a great amount of monetary losses for both 
banks and card-holders [32]. The rising trend in fraudulent acts have continues to raise deep concerns 
for which fraud detection and prevention schemes – have consequently, become an urgent cum 
crucial task if businesses must continue to thrive.  
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Fraud can be grouped into: (a) the outright theft of cards, (b) theft of card-holder’s confidential and 
personal details acquired via phishing [33], and (c) use of key-logger malware to surreptitiously retrieve 
card-holder’s details over online transaction without a holder's consent and awareness [34], [35]. 
Such cost lost to card fraud has since become a global issue as the card-tech industries and their 
respective issuers have also globally, incurred billions of dollars in losses, annually [36]–[38].  
 
Even with the many efforts to dissuade adversaries, they continue to provision new technologies with 
accompanying techniques aimed at circumventing security measures that help them evade detection. 
Making this fight, a constant battle. Thus, banks and card-holder must be poised to remain resilient 
and progressive in the continued quest cum improvement with fraud detection and prevention 
systems/schemes [39]–[41].  
 
The adoption of machine learning models as low-cost, computational alternatives to tradition schemes 
– have since yielded successfully trained heuristics and algorithms, which can effectively recognize 
fraudulent activities profiled, patterns [42]. Machine learning (ML) models learns these patterns via 
features of interest, which helps them identify these patterns as signature classification that deviates 
from a norm in behavior, or its quick detection as an unusual activity in transaction pattern indicative 
of a fraudulent profile [43]. A variety of ML have yielded resultant success with its adoption in card 
fraud detection and prevention to include: Logistic Regression [44]–[46], Deep Learning [47]–[49], 
Bayesian model [50]–[52], Support Vector Machine [53]–[55], Random Forest [56]–[58], K-Nearest 
Neighbors [36], [59], [60], and in other models [61]–[63].  
 
Their flexibility and performance is greatly hampered and degraded with the choice in their adopted 
feature selection technique and data-preprocessing scheme [64], [65]. Thus, we adopt the eXtreme 
Gradient Boost (XGBoost) ensemble with the Synthetic Minority Oversample Technique Edited Nearest 
Neighbor (SMOTEEN) data balancing, and chi-square feature selection mode for the Kaggle dataset 
used. Our choice for XGBoost is due to its ability to reduce overfitting, to address imbalanced datasets, 
and yield a vigorous prediction accuracy [66]–[68]. 
 
2. LITERATURE REVIEW 
 
[69] proposed novel deep learning feature-based architecture for fraud detection, exploring 
homogeneous behavior analysis to profile user behavioral data. It uses a card-holder details to 
authenticate associated transactions as well as check these against the database to ensure accuracy 
prior use of a card. Study [70] extended [71] for card-fraud detection using a spatio-temporal for on 
real-time card transactions – encoding data inputs using the principal component analysis mutation. 
However, they noted that many studies explored dataset that had specific details, and could not yield 
the requisite confidentiality required by credit card transactions.  
 
This raised more security concerns. [17] investigated the card-not-present form with non-contact fraud 
to deploy the card-not-present detection/prevention heuristic. [72] investigated a cardholders’ 
capability to identify fraudulent transactions with Random Forest under-sampling to address data 
imbalance conflicts. This helped to reduce dimensionality of features and parameters vis-à-vis 
accelerated the training phase to enhance prediction accuracy.  
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Furthermore, [73] experimented using the recursive feature elimination, information gain and chi-
squared concurrently with the Random Forest model for credit card fraud detection. With a focus on 
feature selection – their study achieved a prediction accuracy of 99.2% with reduced training time that 
did not compromise model performance. [74] sought to address the challenges in [74] on how fraud 
acts are masked, examine detection procedures, and analyze the many motivations for adversaries to 
exploit fraud actions, threats and breaches to networks. They proposed a hybrid modular ensemble 
for credit card fraud detection, which achieved a prediction accuracy of 99.6% to effectively classify 
benign from genuine transactions.  
 
Thus, banks must now explore and deploy flexible, robust and adaptive card fraud detection systems 
for all types of online credit-card transactions. In this study, we explore RF with synthetic minority 
oversampling technique (SMOTE); while, table 1 summarizes some contributions made so far in the 
study of credit card fraud detection schemes. 
 
Table 1. Related Literatures Contributions 
Authors Efficient Selected Algorithms/Heuristics Accuracy 
Akazue et al. [73] Hybrid feature selection technique  95.83% 
Btoush et al. [59] Deep Learning 95.76% 
Roseline et al. [75] Long Term Short Memory (LSTM) 99.58% 
Sinayobye et al. [76] KNN, LR, SVM, DT and RF 82.60% 
Ali et al. [77] LR, KNN, SVM, PCA, QDA, ANN 98.45% 
Rytali and Enneya [78] LR, LSTM, XGBoost 97.23% 

 
The inherent gaps includes thus [79]–[83]: (a) finding an appropriately formatted dataset is crucial in 
machine learning task as it will improve model construction, generalization, training and performance 
evaluation, (b) if the right-format dataset is available, it is often limited and un-balanced data, which 
often yield poor generalization, model over-training and overfitting [84], (c) studies are found to use 
the dataset as retrieved without data balancing applied – as fraud dataset is found as imbalanced in 
their class-distribution [85], [86], and (d) increased use of multiple channels such as POS, online apps 
to aid transactions [87]–[89] implies that future studies must integrate such channel data to enhance 
the overall accuracy [90]–[92] as traditional fraud detection schemes may have been found to yield 
limited performance adapting to these emergent fraud patterns. 
 
3. MATERIAL AND METHOD 
 
3.1. Data Gathering 
Dataset used was obtained from [web]: www.kaggle.com/datasets/mlg-ulb/creditcardfraud”. Dataset 
contains credit card transactions by European cardholders in September 2013. Of the 284,807 
transactions, 492 were fraud. Inputs are transformed using the principal component analysis. Due to 
confidentiality constraints – the original and additional context for the dataset are not provided [49]. 
A description is seen as in table 2 as thus: 
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Table 2. Dataset Description for Cross-Channel Data Acquisition 
Features Data-Type Format Feature Description 
User Name Object abcd Account Holder’s Name 
Bank Name Object abcd Bank of Account Holder 
Transaction Amount Float 12:34 Number of transactions in the bank 
Daily Transaction Int 1234 Daily number of transactions performed daily 

by a cardholder 
Average Transaction Amount Float 12.34 Average amount during a specific transaction
Daily Transaction Limit Float 12.34 Daily limit of the amount a cardholder does 
Transaction Gap Time Float M:D:Y Duration from last transaction to the current 

transaction 
isDeclinedTransaction Boolean 0/1 Specifies if a transaction is declined or not 
Declined Transactions per Day Int 1234 Total transactions declined each day 
Transaction Type Object abcd Local, International, and/or e-Commerce as 

data type 
Transaction Channel Object abcd Channel (payment terminal and/or merchant 

application) 
Freq. of Transaction Types Int. 1234 Average frequency of transactions by 

cardholder 
isForeignTransaction Boolean 0/1  Set as 1 if transaction is True; Else set as 0 if 

False 
isHighRiskCountry Boolean 0/1  Set as 1 if transaction is True; Else set as 0 if 

False 
Daily Chargeback Average Amount Int 1234 Total money chargebacks of all cardholder 

transactions handled daily 
6_Month_Average_Chargeback Int 1234 Average number of chargebacks handled over 

a 6months period for a cardholder 
6_Months_Chargeback_Frequency Int  1234 Total chargebacks transactions handled over 

a 6-Month period 
Date/Time Float M:D:Y Transaction Date and Time 
Merchant Object Abcd Hotels, Restaurants, etc 
Daily_ChargeBack Float 12:34 Fees charged per transaction on a certain day
isFraudulent Boolean 0/1 Indicates if a transaction is fraudulent or not 

 
3.2. Data Pre-Processing  
Some reasons for choosing XGBoost includes: (a) its output  leverages on the decision of many weak, 
base-learners fused into a stronger classifier, (b) they can both handle complex, continuous and 
categorical dataset, (c) they yield decreased risk in poor generalization and model overfit, (d) they 
efficiently understand and reflect within their heuristics, the relative contribution of feature selection 
to prediction performance (be it classification or regression tasks), and (e) they are quite resilient to 
noise in their quest for ground-truth in real-world tasks and with (un)structured dataset.  
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As thus, we perform data augmentation as our first phase with ensemble training as thus: 
1. Step 1 – Data Balancing: Augmentation is clearly expressed in Section 1.3 – noting the 

differences between over-, under- and randomized sampling. Afterwards, the dataset to 
be used for the XGBoost is then split into train and test sets (as balanced) to help the 
heuristics easily identify underlying feature patterns. However, our test-set consisted of 
hypothetical cases, functioned as a specific assessment subset, enabling a thorough 
examination of the heuristic’s capability to identify churn-class.  
 
Some inherent benefits of augmentation includes thus: (a) it prevents dataset bias and 
skewness with imbalanced dataset that will normally distort prediction performance and 
accuracy, (b) it enhances generalization through balanced datasets so the ensemble can 
adequately learn features and patterns from all classes even with majority or minority 
voting with the balanced dataset and to detect anomalies at test-phase, and (c) the 
characteristics linked to the majority class often have a greater significance than other 
features in an unbalanced dataset – so that by balancing the dataset, the model is better 
able to understand the significance of each feature for every class, producing more 
insightful results. 
 
The synthetic over-sample technique (SMOTE) helps revise an imbalanced dataset onto 
a balanced class distribution as thus: (a) identify interest-class (minority), (b) select 
instances, adjusting the number of its closest neighbors, (c) then, interpolates data point 
ranges between the interest (minority) class instances, and its neighbors to create 
synthetic additional points, and (d) add the synthetic instances to original dataset to yield 
an oversampled, balanced dataset of both classes [93], [94] as in Figure 1a and b 
respectively. 

 

 
 
Figure 1a. Dataset without SMOTE 
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Figure 1b. Dataset after applying SMOTE 
 

2. Feature Selection is a pre-processing step that reduces a dataset dimensionality by 
removing all irrelevant and docile feats or parameters [95], [96] – leading to an 
improvement in the model classification performance [97]–[99]. It also yields streamlined 
data collection in model training for scenarios where cost is a critical factor (e.g., target 
design etc), it yields a fast-tracked model construction and training for both classification 
and regression tasks, and assists in interpreting the innate structure of datasets [100], 
[101]. We assess the efficacy in FS to its selected features, and its evaluation is often 
easier and non-complex for tasks where the ground truth (relevant features) is known. 
However, ground truth is not always available for training [102]–[105].  
 
We thus, employ the chi-square test to ascertain if the occurrence of a specific, chosen 
feat relates to the target (fraud) class via its class-frequency distribution. FS extracts only 
feats (as parameters) that highly correlates with the output-class. Here, we use Python 
sklearn (which sets a 0 if no mutual information; and a 1 if its perfectly correlates) a chosen 
feat with target feature/class. All features are ranked by chi-squared using the threshold 
value as in Equation (1). 

 

𝑋 =  
∑ ௫೔

௡
            (1)   

 
A total of 22-features was extracted and we used chi-square to compute the threshold 
value as in Equation 1 for each attribute to yield scores [106], in lieu of each attribute’s 
correlation with the target class 1 (i.e., fraud) as in Table 3. With computed threshold of 
9.0874, a total of twelve (12) feats were selected, and figure 4 shows the ensemble’s 
feature importance scores. These were examined to help us gain insights into the 
contribution of different features to the classification process [107]. 
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Table 3. Ranking of Attributes score using the Chi-Square 
Features Selected (Yes/No) X2-Value 
User Name No 3.3561 
Bank Name No 13.364 
Billing Address No 0.0419 
Transaction Amount Yes 19.056 
Daily Transaction No 0.0012 
Average Transaction Amount Yes 0.2489 
Daily Transaction Limit Yes 2.4701 
Transaction Gap Time Yes 8.4920 
isDeclinedTransaction Yes 78.3721 
DailyDeclinedTransaction Yes 88.222 
Transaction Type No 0.2589 
Transaction Channel No 3.0298 
Freq. of Transaction Types No 18.006 
isForeignTransaction Yes 23.092 
isHighRiskCountry Yes 6.0929 
Daily_ChargeBack No 0.0167 
Daily_Chargeback_AveAmount Yes 38.389 
6_Month_Average_Chargeback Yes 41.902 
6_Months_ChargebackFreq. Yes 25.287 
Date/Time No 0.0824 
Merchant No 0.0117 
isFraudulent Yes 0.2143 

 
3.3. The Proposed XGBoost Classifier 
The XGBoost is a decision tree ensemble, which leverages on scalable Gradient Boost model [108] to 
classify data-points. As a strong classifier, it explores boosting scheme to combine weak learners over 
a series of iteration on data-points to yield optimal fit solution [109]. It expands its objective function 
by minimizing its loss function as in Eq. 1 to yield improved ensemble variant to manage its trees’ 
complexity [110]. Its optimal leverages on the predictive processing power of its weak base-learners, 
accounting for their weak performance that contributes knowledge about the task, to its final outcome 
[111].  
 
With each candidate data (xi, yi) trained, we expand the objective function via loss function l( 𝑌௜

௧ , 𝑌෠௜
௧) 

and its regularization term Ω(𝑓௧) – which ensures ensemble does not overfit and is devoid of poor 
generalization. This feat ensures training dataset fits with re-calibrated solution that remains within 
the set bounds of the solution. This regularization term ensures our tree complexity, appropriately fits 
– and also, tunes the loss function for higher accuracy [40]. 

 

𝐿௧ = ෍ 𝑙

௡

௜ ୀ ଵ

൫𝑌௜
௧ ,  𝑌෡௜

௧ିଵ +  𝑓௞(𝑥௜) ൯ +  Ω(𝑓௧)       (2) 
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3.3. Training Phase 
Ensemble learns from scratch via training set as expanded data-points via SMOTE. The iterative tree 
construction feat allows bootstrap training of each tree to enhance training data. Trees' collective 
knowledge is enhanced by this, and helped ensemble identify the intricate patterns present in each 
transaction. Training set blends synthetic and actual samples to guarantees XGBoost comprehensive 
learning; And thus, improves its flexibility. 
 

1. Step 1 - Hyper-Parameter Tuning controls how much of the tree complexity and its 
corresponding nodal weights need to be adjusted in place of gradient loss. The lower 
the value, the slower we travel on a downward slope. It also ensures how quickly a tree 
abandons old beliefs for new ones during the training. Thus, as tree learns – it quickly 
differentiates between important feats and otherwise. A higher learning rate implies 
that the tree can change, learn newer features as well as adapts flexibly, and more 
easily. Ensemble uses the regularization term to ensure the model changes quickly, 
only to values that are within the lower and upper bounds. The ensemble does this to 
ensure that it adequately adjusts its learning rate to avoid over-fitting and overtraining. 
Hyper-parameters tuned includes max_depth, learning_rate and n_estimator. For best 
performance, the XGBoost ensemble must carefully tune these parameters [112]. 

2. Step 2 – Retraining is an applied ML scheme that estimates the learned skills of a 
heuristic technique on unseen data. It also seeks to evaluate model's performance 
about its accuracy on how well it has learned the underlying feats of interest via the 
resampling technique. To retrain – modelers choose several data folds (partitions) to 
ensure model is devoid of overfitting. We use stratified k-fold (rearranges the data to 
ensure that each fold is a good representation of the entire dataset) as in algorithm 
listing 1 [113]–[116]. 

 
The resulting ensemble was deployed as application program interface (API) to effectively 
test the system. Thus, it is utilized as web-application, mobile apps and ported onto a variety 
of platforms as embedded system using automated teller machine. point-of-sale unit etc 
[117], [118]. We achieved this feature using the flask API, and Streamlit interface – to test 
the ensemble [119]. 

 
 
4. RESULTS AND DISCUSSION 
 
4.1. Training Performance Evaluation 
Training allows decision tree’s adjustment via the loss and regularization function(s). We tune tree’s 
hyper-parameters via a trial-n-error mode for: max_depth, learning_rate, and n_estimators respectively 
during training to yield an optimal solution [120]. Tuned values for each parameter is as in Table 4, 
and it improves our proposed ensemble's fitness in lieu of performance generalization. It is observed 
that the best-fit results with hyper-parameters tuning in learning_rate of 0.251, max_depth of 5, and 
n_estimators of 250 respectively. 
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Table 4. Hyper-parameter Values 
Hyper-
Parameters 

Definition Trial-n-Error Best Value 

Max-Depths Max. number of trees 
depth 

[1, 2, 4, 5, 6, 8, 10] 5 

Learning Rate Step-size for learning  [0.05, 0.1, 0.2, 0.3, 0.5, 0.75] 0.25 
N_Estimators Number of trees in 

ensemble 
[50, 100, 150, 200, 250, 300, 350, 
400, 450, 500] 

250 

 
Table 5 shows confusion matrix before/after applying the SMOTE data balancing technique. It yields 
an outlier effect that agrees with [121]–[123]. The proposed and experimental benchmark ensembles 
were trained and values compared with on their capability to balance accuracy, precision and recall. 
It also supports the effectiveness and efficiency of the RF ensemble – offering a detailed perspective 
of the ensemble's performance in differentiating between genuine positives, true negatives, false 
positives, and false negatives. 
 
Table 5. Performance metrics of ‘before/after’ SMOTE is applied 

 
Ensembles 

Without SMOTE Applied With SMOTE Applied 
F1 Accuracy Precision Recall F1 Accuracy Precision Recall 

Logistic Regression 92.19 97.18 93.57 95.82 98.05 98.05 98.05 96.78 
KNN 94.35 77.47 92.64 66.57 92.10 92.28 90.18 94.48 
Naïve Bayes 95.08 83.03 83.62 82.45 91.25 90.74 96.16 85.90 
Support Vector Machine 81.45 50.00 94.57 33.98 90.08 80.32 85.41 75.81 
Random Forest 97.89 97.98 96.01 97.08 98.89 98.01 98.20 98.05 
XGBoost 98.24 98.02 96.89 99.01 99.19 98.19 98.28 98.10 

 
Our proposed experimental XGBoost outperforms other ensembles as it yields an accuracy of 0.9802 
for before applying SMOTE data balancing; while, LR, KNN, NB, SVM and RF yielded 0.9718, 0.7747, 
0.8303, 0.50, and 0.9798 for before SMOTE is applied respectively. Conversely, after the application 
of SMOTE, our proposed XGBoost outperforms other ensembles with an accuracy of 0.9819; while, 
LR, KNN, NB, SVM and RF yielded 0.9805, 0.9228, 0.9074, 0.8032, and 0.9801 respectively. 
 
In addition, our proposed ensemble yields F1 of 0.9824/0.9919 for before/after applying SMOTE; 
while, F1-scores for others LR (0.9805/0.9889), KNN (0.9219/0.9805), NB (0.9508/0.9125), SVM 
(0.8145/0.9008) and RF (0.9789/0.9889) respectively. The usage of SMOTE data balancing ensures 
improved performance as compared to when not applied [124]–[126] as in Table 5, which agrees with 
[112], [127], [128]. Result shows proposed XGBoost outperforms other benchmarks as it uses 
boosting approach as opposed to bagging scheme as found in Random Forest [129]. 
 
4.2 Discussion of Findings 
It provides insights into which characteristics have a bigger influence on overall performance and aids 
in identifying the most important aspects influencing the model's predictions [130], [131]. Figure 2 
shows confusion matrix, and we evaluate the ensemble’s performance [132] – showing that XGBoost 
ensemble correctly classifies the test-set instances with over 99.19% accuracy for only 14-incorrect 
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classifications and 9,599-correctly classified instances; And which agrees with studies [133]–[135]. 
The XGBoost ensemble performed best via SMOTE data augmentation as a sampling method [136]–
[138] in combination with the chi-square feature selection scheme as adapted [73], [74]. The 
ensemble yields the F1 of 0.9945, Accuracy of 0.9984, Precision of 0.9616 and a Recall of 0.9890 
respectively. 

 

 
Figure 2. XGBoost Confusion matrix using SMOTE 

 
5. CONCLUSIONS 
 
With the current surge in technological development and the widespread adoption of new technology-
driven business strategies, businesses can now operate more efficiently, productively, and profitably. 
Despite the enormous amount of data generated daily, we have observed that polyurethane industry 
has lagged behind in developing cutting-edge technologies in data analytics. It is a step in the future, 
and need be improved upon [133]–[135]. The ensemble has benefits [139]–[141]: (a) it yields fewer 
features with dataset balancing to aid faster model construction and training [142], (b) lessened 
training time for the ensemble especially in card fraud detection, where quick response is critical 
[143], [144], (c) implemented with cross-channel integration and robust apps/platforms [145], (d) 
XGBoost yields enhanced accuracy in that adapted feats did not degrade performance compared to 
[73], [94]. Our ensemble successfully detected card-fraud transactions [146]–[148] with minimal 
error – to equip banks, to secure their assets vis-à-vis provide improved user-trust experience. 
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