

149

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

Architectural Framework for Improving QoS of Service for Interoperable
Service-Oriented Systems

1Ochei, L.C.; 2Ogunsakin, R.; 3Wobidi, Echebiri

Department of Computer Science
University of Port Harcourt

Port Harcourt, Nigeria.
E-mail: 1laud.ochei@gmail.com; 2rotimi.ogunsakin@gmail.com; 3echebs62@yahoo.com

ABSTRACT

This paper presents an architectural framework for analyzing the performance of interoperable service-oriented
systems. Previous research has focused on the architectures for evaluating the performance of service-oriented
systems, and there are serious limitations in the transactional capabilities of these architectures. This paper proposes
an enhanced architectural framework for improving transactional and security support for interoperable SOA-based
systems and improve the quality of service of the system. First, we present two traditional web service transactions
framework. Second, we present our proposed transaction model and show how it maps into the traditional frameworks.
Third, we show how to extend the traditional web service transaction models to incorporate interoperable SOA-based
systems using a procurement system as a case study. Extensive evaluations using architectural analysis shows that
the architecture satisfies the analysis goals, and system requirements. Thus, the proposed architecture is
recommended for system designers and developers to enhance transactional support for interoperable service-
oriented systems.

Keywords: Architecture, Interoperability, Service-oriented system, cloud deployment, performance

CISDI Journal Reference Format
Ochei, L.C., Ogunsakin, R., Wobidi, Echebiri (2020): Architectural Framework for Improving QoS of Service for Interoperable Service-Oriented
systems. Computing, Information Systems, Development Informatics & Allied Research Journal. Vol 11 No 2, Pp 149-170
Available online at www.isteams.net.cisdijournal

1. INTRODUCTION

A large variety of large-scale enterprise transactions systems exist on the internet, ranging from web servers to e-mail
servers, streaming media services, and e-commerce servers. Most of these systems are built with web services, using
the classical client-server architecture, where multiple clients concurrently access these services. Under this situation,
such systems are bound to face varying workloads, where for instance, an e-commerce system may experience a
heavier workload at peak hours of usage (Arlitt and Jin, 1999). In the extreme form, a heavy workload may induce
server thrashing and service unavailability, with underlying economic costs (Malrait et al, 2009). These costs are
estimated at up to US$2.0 million/hours for Telecoms and Financial companies. Apart from the resulting cost
implication, the transactional and security capabilities of the systems are severely limited due to concurrent transactions
with interleaving operations that span across different applications and shared resources.

150

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

Quality of service (QoS) is important in improving transactional and security support for business operations in a large
enterprise transaction system. Monitoring the QoS across SOA-based systems is very challenging because software
and hardware components of the system are prone to errors [Ref]. Nevertheless, setting up this infrastructure is critical
to reduce and prevent system downtime.

Eliminating application downtime poses a significant challenge for IT organizations. This is particularly true for
applications that must provide continuous or near-continuous operations to users who increasingly expect
uninterrupted availability of online services. Any outage of an application or website, even if that outage is scheduled
or planned, has an impact on the revenue and reputation of the business. Put simply, downtime equals lost revenue.
For example, the Computer Security Institute reported a worldwide financial loss and business disruptions of circa
(equivalent to US$130 million loss), that resulted from viruses, unauthorized access, and theft of proprietary information
in 2005 (Computer Security Institute, 2005).

Motivated by the challenges highlighted above, this paper presents an architectural framework to provide transactional
and security support for interoperable service-oriented systems. Transactional and security support is vitally important,
first, to ensure data integrity when managing transactions in a distributed environment (Marina et al, 2006) and also to
improve performance and quality of service of the system.

The main contributions of the paper are:
(i) an architecture for integrating the design model into a web service distributed transaction scenario to improve
transactional and security support for the system.
(ii) novel distributed transactional and security support (DTSS) Algorithm for enhancing transactional support for an
interoperable SOA-based system.

The rest of the paper is organized as follows: Section 3 discusses the transactional and security support for
interoperable SOA-based systems. Section 4 presents a high-level model of the proposed system. Section 5 presents
extensions to existing frameworks for web service transactions. Section 6 is the evaluation of the architecture. Section
7 concludes the paper with recommendations for future work.

2. TRANSACTIONAL AND SECURITY SUPPORT FOR INTEROPERABLE SOA-BASED SYSTEM

This section presents a scenario which captures a transactional and security for interoperable SOA-based systems.

2.1. Motivating Scenario
The following motivating scenario is adapted from our previous work (Ochei, 2012). The scenario demonstrates the
problem of managing interoperable service-oriented systems in a distributed transaction scenario and motivates the
need to enhance transactional and security support. Figure 1 shows an overview of the features of a procurement
system (which represents an interoperable SOA-based system), while Figure 2 shows an expanded view of the
purchase-order sub-system.

151

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

Figure 1: Deployment Diagram for the Procurement System

Figure 2: An expended view of the Purchase-Order sub-systems (sequence diagram for message flow
between the three service handlers)

Our distributed transaction scenario is very simple and straightforward. It has the following features:

Procurement System

Customer
system

Purchase-order system Manufacturing
system

152

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

i. The procurement system is an interoperable SOA-based application. There are three sub-systems within the
procurement system – Customers system, Purchase-Order system and Manufacturing system.

ii. The procurement system is modelled after a loosely coupled SOA architecture, where the Purchase-Order
sub-system exists within its organizational context and is implemented as a tightly coupled subsystem. This
organization manages the purchase order system and is responsible for the operation of all its components.

iii. Although, the above scenario does not demonstrate how to make two or more systems to interoperate, instead
it draws attention to the challenges of interoperability management in a distributed environment.

iv. There are concurrent transactions that span across different applications and resources, and for a transaction
to be completed, there may be different operations that are involved and each of these operations may be
handled by the different subsystems.

v. The figure above (Figure 1 and Figure 2) assumes that a transaction is used to coordinate multiple operations
that span across multiple platforms and control the commit or abort of any changes submitted to the underlying
data source.

vi. The purchase-order system is trying to portray a short-lived transaction that is deployed within the boundaries
of the same corporation. Again, it is expected that the level of trust among the participants is fairly high. These
are in fact, features of the WS-Atomic Transactions.

vii. The purchase order subsystem is composed of three services(developed independently and specifically for
the application): order services- implemented using .NET platform, the inventory service- implemented using
the PHP platform, and the supply services- implemented using the Java EE platform. The purchase order
sub-system (i.e. all the web services) is connected to a shared database – the SQL Server database. The
services could run on single or different computer systems with the same operating systems and application
servers.

viii. The databases are shared by two or more components within the system.

2.2.1 Description of the Distributed Transaction Scenario
In the diagram shown in Figure 2, there are two dependent processes (order service and inventory service), and one
independent process (supply service) which have to collaborate to place an order for a product P1 in a procurement
system. The initial product count for P1 is 600 units. A customer initiates a transaction T1 to order for 500 units of P1.
The order service sends a call to the inventory service to confirm if P1 is available. Once P1 is confirmed to be available,
the inventory service updates its stock inventory, and the purchase order is created. Immediately after updating the
stock inventory, the supply service checks and compares the current product count of P1 with the reorder level of that
P1. A new product request is immediately generated if the product count for P1 is below 500.

This sort of process severely limits transactional capabilities across platforms because a different service (platform) is
adding and updating inventory while another independent service (platform) is accessing the changed inventory before
generating a new product request. Assuming that this order is later cancelled while T1 has not yet been committed
(may be due to service failure or delay), and meanwhile the product count for P1 had already been decremented. It is
possible for other concurrent transaction (T2, T3,…,Tn) to make an order based on the assumption that 600 units of
P1 is still in stock. These types of transactions are not allowed in a procurement system, as it would result in potentially
overselling P1.

Again, assuming the purchase order is not cancelled but there was an error (may be due to inventory service failure)
or a delay that prevented an update on the product count of P1, request for product count information from other
concurrent transactions will be denied (or locked) for a long time until service is restored and the supply service will not
also be able to generate new product request.
Unaware that inventory service may be down or that P1 may be out of stock, several independent transactions (T1,

153

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

T2, T3,…,Tn) may attempt to place order for P1. Many of those transactions would definitely fail and this would result
in a situation where the database is left in an inconsistent state. It will also lead to very low quality of service (i.e., low
throughput and high response time, system unavailability) guarantee to customers. When service is restored
eventually, it will be very difficult to recover those transactions that have failed because no logging information was
maintained. It will also be difficult to trace and report transactions for suspicious activities due to the absence of a
central logging mechanism in the system.

This scenario shows that order service depends on the inventory service, which verifies that the selected product is in
stock. The inventory service also depends on the supply service, which generates a new product request when the
product count is low. Current web service transaction standards do not address most of these problems - dependencies
and recovery, and error-handling issues and low quality of service. There are no efficient models to express and also
handle these problems. A robust architecture is required for this interoperable SOA-based system where there is a
need for enhancing transactional and security support.

2.2 Challenges of the system
The motivating scenario described in the previous section points the following specific problems:

I. Many useful mechanisms for improving transactional support and security are either excluded or poorly
implemented in the current web service transaction frameworks and other transaction models.

II. Most proposed frameworks and models do not express and address transactional and security support issues
– dependencies, recovery, error-control, database consistency, availability, and secure tracking and reporting
of suspicious transactions. Some proposed models cannot also be deployed within existing frameworks for
web service transactions.

III. Transaction conflicts occur leading to failed transactions, locks contentions that could last for a long time.
IV. The database might be left in an inconsistent state.
V. Difficulty in recovering failed transactions in case of service failure.

VI. Difficulty in reporting and tracing transactions for suspicious activities.

2.3. Distributed Transactional Model Based on A Multilayered Architecture
In this section, we introduce an architecture that will sustain our enhanced model for improving transactional and
security support for interoperable SOA-based systems. Figure 3 below shows the conceptual view of this multi-layered
architecture.

154

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

Figure 3. The multi-layered Architecture (Adapted from Alrafai, 2006)

The proposed multi-layered architecture can be modeled with the multilevel nested transaction model from (Weikum,
1991). This model fits into the multi-layered architectures where each layer has its own level-specific semantics of the
set of operations. This model is a special case of the open nested transaction model with the requirement that all leaf
nodes in a transaction tree correspond to operations at the particular level of abstraction, where the edges represent
the implementation of each operation at level Li by a sequence of operations at the next lower level Li-1 (for i=1,…, n
in bottom-up order of a n-level system). In the architecture shown in Figure 3, we have a 3-level system (L1= resource
level, L2=service level and L3=process level).

The three levels in our scenario are as follows:

I. Process level - A set of business processes or activities that calls the procurement system.
II. Web service interface level- A set of web service operations that provides access to products available for

customers to order.
III. Data source level -A database that stores and manages products

We assume that each process on the process level is mapped to one web service operation (e.g. check product
availability/ generate new product request) on the web service interface level which is in turn mapped to a database
transaction on the data source level. The consistency of the overall system can only be guaranteed, if the produced
schedule at each level is guaranteed to be serializable (i.e., equivalent to some serial execution of the involved
transactions) (Weikum, 1991). In this paper we restrict our focus on process level transactions with Web service level
operations as elementary operations of these transactions.

155

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

2.3 Review of Related Works

There are several related research work that explores existing and proposed transactional model to manage web
service transactions. Most research agrees that the traditional ACID transactions are unsuitable for application in a
distributed environment (especially web service transactions) (Alrafai et al, 2006; Wenbing et al, 2005, Marina et al,
2006; Reddy, 2003; Little and Freund, 2003). Hence, there are a lot of protocols and models that have been proposed
to address the limitations of traditional ACID transactions. Some of these protocols are still anchored on traditional
ACID properties of a transaction management system, although with some relaxed properties while others are
extensions to the standard web service transaction framework.

Several works evaluate the performance of applications that implement these web service transaction frameworks. It
is generally accepted that QoS related parameters are a key to evaluating the performance of these applications
(Alrafai, 2006; Reddy, 2003; Marina et al, 2006; Wenbing, 2008). Alrifai et al (2006) proposed an extension to the
standard web service transaction framework to support concurrency control at the service level, and he also performed
an experimental evaluation using simulation to validate that his proposed framework outperforms the conventional
distributed 2PL in terms of response time and throughput. The performance was measured in terms of the average
response time and overall throughput of the system.

Another approach for performance evaluation was done by Reddy et al (2003) where he aimed to study the effect of
introducing delays in a distributed transaction. Reddy in his work set some parameters for execution that are consistent
with the performance of the conventional two-phase locking method. The simulation result of the number of aborts (Na)
and the total number of transactions (Nt) was measured, and then the Mean of Missing Rate (MMR) defined as the
ratio of aborts over the total number of transactions was computed. A low value of MMR points to good system
performance for comparisons. (Reddy et al, 2003).

Our research differs from the above works cited in many respects. Most of the above works cited above have addressed
the issue of transactional support for web service transactions by extending the current standard framework for web
service through incorporating certain mechanisms that will address a particular aspect such as concurrency control
and transaction dependencies. In this research, we proposed a generic transactional model, and then show how it can
be deployed within any framework for web service transactions. We also consider other useful mechanisms such as
mechanism for improving QoS as well as a mechanism for secure tracking and reporting of transactions for suspicious
activities.

3. ANALYSIS OF THE EXISTING SYSTEM

Two architectures will serve as our existing system. The first is the architecture of the standard web service transaction
framework (as described by OASIS specifications) while the second will be the conventional enterprise transaction
system built using web services. These architectures are themselves frameworks that can be extended to
accommodate our enhanced model for improving transactional and security support for interoperable SOA-based
systems.

3.1 Web Service Transaction Framework
In 2007, OASIS, the international standards consortium, announced that its members have approved Web Services
Transaction (WS-Transaction) version 1.1 as an OASIS Standard, a status that signifies the highest level of ratification.
More than 20 organizations collaborated to define the protocol framework for coordinating distributed application
actions.

156

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

WS-Transaction describes an extensible framework for providing protocols that coordinate the actions of distributed
applications. Such coordination protocols can be used to support a wide variety of applications that require consistent
agreement on the outcome of distributed transactions. WS-Transaction is offered on a Royalty-Free basis, as provided
under OASIS policies. The WS-Transaction OASIS Standard comprises three specifications: WS-Coordination; WS-
AtomicTransaction; and WS-BusinessActivity. WS-Coordination enables an application service to create the context
necessary for propagating an activity to other services. WS-Coordination defines two key concepts (see Figure 4):

Figure 4. Standard Web Service Transaction Framework (Alrafai, 2006)

(i) The Coordinator
The coordinator is responsible for creating the context and coordinating the different partners according to the applied
protocol. The coordinator role can be taken by the initiator of a distributed application or by a (trusted) third party.

(ii) The Participant
The participant is an entity that resides on the Web service provider side and represents an instance of the Web service
that has been invoked within the distributed application. This entity is responsible for communicating with the
coordinator according to the applied protocol on behalf of the Web service. Transaction protocol’s messages can be
exchanged and coordinated within this framework.

WS-AtomicTransaction defines agreement protocols for short-lived activities having the all-or-nothing property, and
WS-BusinessActivity defines protocols for long-running transactions that require compensation-based agreement.
Working together, these specifications enable existing transaction processing, workflow, and other systems to hide
their proprietary protocols and operate in a heterogeneous environment. In this paper, we shall refer to these
specifications as WS Transaction framework (the de-facto standard for web service transaction). Many issues were
not addressed in the WS-Transaction framework and therefore several authors have proposed extensions to this
framework to support, for example, concurrency control (Alrafai, 2006) as shown in Figure 5.

157

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

Figure 5. Web service transaction framework (adapted from Alrafai, 2006)

There are other frameworks in the web services domain. These include OASIS Web Services Composite Application
Framework (WS-CAF) TC. However, we shall deal only with the web service transaction framework. In this study, we
will also be proposing an extension to the web service transaction framework for improving transactional and security
support (OASIS, 2012).

3.2 Conventional Enterprise Web Service Transaction Architecture
There are several enterprise transaction systems built using web services and which may not strictly conform to the
web service transaction framework as described by OASIS specifications.

A typical enterprise transaction system built using Web services is shown in Figure 6. Application servers execute
business logic and request database operations and are usually placed on an internal network separate from the Web
servers for security purposes. A set of Web servers running (IIS and ASP.NET Development Server) accepts incoming
requests and use a queuing resource manager such as Microsoft® Message Queue (MSMQ) to deliver them to
application servers for processing. Client applications use a Web Services Description Language (WSDL)-generated
proxy in order to submit operations to the Web server (Connolly, 2004).

Figure 6. A Typical Web Services Transaction Architecture (Connoly, 2004)

158

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

Most client transactions will consist of multiple SOAP requests. SOAP is a wire protocol, a way to transfer data between
distributed systems using XML technologies and protocols such as HTTP. For example, a financial market trade might
consist of a SOAP request to submit an order and a subsequent request to check for its execution. Or a product
purchase might consist of one request to submit an order, a second request to submit credit data, and a third request
to obtain an order number for a completed order.

3.2 Challenges of the Existing Architectures
In this section we discuss the weaknesses that are inherent in existing frameworks for web service transaction, and
hence raise the need for introducing various mechanisms that will enhance web service transactions. The WS-
BusinessActivity coordination type (which is based on the open nested transaction model) relaxes the isolation
property. It permits disclosing intermediate results by autonomous participants instead of locking local resources until
the end of the (global) transaction. In the case of transaction abort, the effects of already committed sub-transactions
are undone by means of compensating sub-transactions. When the number of transactions having access to
intermediate results increases, the compensation of some operations becomes either too expensive or even
impossible, and so the assumption that all service operations can always be compensated is not realistic (Alrifai, 2006).

This raises the need to a concurrency control mechanism for Web service transactions. Several extensions to the
standard web service framework have been proposed and implemented by several authors including Alrifai(2006) to
support control. Most concurrency control algorithms rely on building and maintaining dependency graphs in order to
detect deadlocks in a distributed environment. However, performance studies indicate that a major component of cost
of running the detection algorithms is wasteful (occurs in the absence of deadlock) especially when asynchronous
operations are involved (Reddy, 2003; Shyu et al, 1990; Sinha and Natarajan, 1985).

Our motivating scenario pointed to several mechanisms that can be introduced into various frameworks for web service
transactions. Let us now explain how each of these mechanisms fits into our motivating scenario and strategies for
solving this problem.

(i) Mechanism for error-handling
In the Procurement System, the purchase order is being saved into the database. Once the purchase order transaction
commits, all changes made to the data are permanent, and critical information will not be lost. If an error occurs prior
to modifications committed to the database, changes should roll back, thus leaving the system in the original state.
Being able to roll back or at least notify the errors to recover the system to its original state is an important part of the
process. This is where an effective error-handling mechanism comes into play. An error-handling mechanism should
be developed to ensure that the request either returns back, times out, is resubmitted, or an error is propagated up the
invocation chain. There could also be a custom notification or callback mechanism.

Transaction systems do not usually give guarantee of consistency. In our distributed transaction system, if the product
count does not decrement correctly, the supply processing system may not request products on time. In order to
maintain consistency across the system by building this, business requirement can be built into the error handling
mechanism either at the application logic or by enforcing corresponding constraints at the database level.

(ii) Mechanism for consolidating multiple transactions calls into a single call
In the Procurement System, there are situations where there could be periods where a very large number of users
and/or transactions are either trying to use or are using the system. In other words, high data driven application usually
have large number of concurrent users and operations. Since transactions in a concurrent system can interact with
each other while they are executing, the number of possible execution paths in the system can be extremely large, and

159

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

the resulting outcome can be indeterminate. Concurrent use of the shared resources (in this case, the database) can
be a source of indeterminacy leading to issues such as deadlock and starvation. The solution will be to develop a
mechanism to consolidate multiple transactions calls into a single call or try to reduce the number of transactions and
sub-transactions within the system.

(iii) Mechanism for secure reporting and tracing
In the Procurement system, the transactions span across multiple platforms and resources and the system may suffer
from security problems. Sometimes the security policy that is designed to address this problem may also be
implemented at different levels. The challenge then is how to bring the security processing logic into a single
component, and then implement it in a distributed environment. Again, in our procurement system scenario, there is
no way to know how many transactions have succeeded or failed, why they have failed, how it failed, when it failed,
and at which terminal or machine. This is simply because no transaction logging information is maintained. The
administrator needs this information to trace and report transactions for suspicious activities. It might also be very
difficult to recover failed transactions in case of service failure if there is no central logging system.

(iv) Lost or duplicate transactions: It is very possible for transactions to be lost in case of a disconnected network.
So the transaction has to be queued in a queuing facility like the MS Message Queue to avoid loss or duplication.

4. HIGH-LEVEL MODEL OF THE PROPOSED SOLUTION

The figure below (Figure 7) shows a high-level model of the proposed transaction model.

Figure 7. Generic View of Proposed Transactional and Security Model

160

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

This model separates the role of the service requester (corresponds to client-view) from the service provider
(corresponding to the server-side). There are two main components of the transactional and security model, namely-
transaction coordinator and transaction scheduler. The transaction coordinator contains components that can be
introduced on the client’s side while the transaction scheduler contains components that can be introduced on the
server-side.

Before implementation, a developer has to decide whether he intends to extend the functionality of the framework on
the client-side or on the server-side. From there, he can then choose the appropriate component to deploy in order to
improve transactional and security support for the interoperable SOA-based system. We have introduced several
components into our proposed transactional model. These components are mechanisms that will be integrated into the
proposed framework to address the problems that were pointed to by our motivating scenario for this paper. These
components are explained below:

(a) The Transaction Coordinator
The transaction coordinator is associated with the client side. It is mainly responsible for handling exceptions and
coordinating the different transactions in the distributed application. It has two main components-

(i) Exception service: This service is responsible for defining exceptions and how these can be communicated to service
users. For example, input messages may be incorrect and so we need exceptions that report incorrect input to the
service client. The exception service is implemented on the client-side (service requester). It is recommended that all
exception handling should be left to the user of the component (Sommervile, 2007). One of the most important functions
of the exception service will be to take the service requesters message or object and apply the handler action, such as
digital signing, encryption/decryption, or tracking the security actions for security audit or compliance reasons. In our
implementation, the exception service is a process that can take the service request from the requester’s object and
process it. In essence, the secure object handler intercepts the service request and adds customs processing logic
such as adding digital signature, encryption/decryption, or tracking the security actions for security audit or compliance
reasons, to the incoming business data object.

(ii) The Coordinator service: This service is responsible for creating and coordinating the different partners according
to the applied protocol.

(b) The Transaction Scheduler
The transaction scheduler is associated with the server-side and resides on the web service provider’s side. It is mainly
responsible for service-level concurrency control and security control. It has two components-

(i) Scheduler service: This service is responsible for checking if there are conflicting transactions such as transactional
dependencies (i.e., concurrency conflicts) so that these can be properly handled. Several other extended frameworks
have also proposed the introduction of this component to the standard web service transaction. There are several
protocols and models that have been proposed for managing and scheduling concurrent web service transactions.
Most of these protocols detect transactional dependencies (deadlocks) by building and maintaining dependency graphs
and ensuring that it contains no cycles. For example, Alrafi(2006) proposed an extension to the standard web service
transaction framework for supporting concurrency control by introducing the WS-Scheduler. The WS-Scheduler
maintains a dependency graph and decides (based on the deployed concurrency control mechanism) when
transactions are allowed to commit their activities and leaves the system.

161

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

Performance studies indicate that a major component of cost of running the detection algorithms is wasteful (occurs in
the absence of deadlock) especially when asynchronous operations are involved (Reddy, 2003). In addressing this
problem, Reddy proposes that instead of maintaining dependency graph as other protocols, we can make use of
transaction-wait-for information to build a local access graph (LAGs). A LAG of T i at site Sk contains conflicting edges
of all transactions Tj such that both Ti and Tj have a conflict on some data item resident at Sk (Reddy et al, 2003). LAGs
avoid significant inter-site message overhead and are convenient for deadlock detection because the possibility of
deadlocks is eliminated by local computations.

In our implementation, we will adopt asynchronous queuing mechanism for the WS-Scheduler. This will enable us to
eliminate the need for record locking and hence an elaborate protocol to handle concurrency control. If all requests are
submitted through a single queue, the application can process its requests serially. And provided only one request is
being processed at a time, the application does not need to simulate serialization by locking resources (Kaye, 2004).
Local computations are eliminated which could also be a bottleneck on the overall performance of the system. (ii)
Secure Tracer Service: This service allows the administrator to correlate the sender’s and recipient messages in pairs
and applies some security processing rules to identify any suspicious messages or trace the source details from the
central logging repository. This service provides a secure tracing capability to meet audit control and compliance needs.
It also provides the capability to identify suspicious messages that may have been tampered with or to scan for any
problematic digital signature in the messages to allow suspicious or potential security vulnerabilities to be detected
proactively.

The secure tracer is an approach recommended by Marina et al (2006), but is often ignored by most implementations.
This strategy requires a central logging mechanism to pull both the sender and the recipient log messages together.
Once the central logging mechanism (in our case, the shared database) is implemented, a simple message matching
functionality can be built to correlate the sender and the recipient messages that refer to the same service request
together.

5. EXTENDING FRAMEWORKS FOR WEB SERVICE TRANSACTION

In this section we will show how to extend framework for web service transaction frameworks. There are two
frameworks that we will consider-
(i) The standard web service transactions (as described by OASIS)
(ii) The conventional enterprise transaction system built using web service

5.1 Standard Web Service Transaction Framework
Figure 8 shows how the different components of our proposed transactional model map to the standard web service
transaction framework.

162

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

Figure 8: Extended Web Service Transaction Framework for Interoperable SOA-based Systems

5.1.1 Description of the Standard Web Services Transaction Framework
Our proposed framework resembles the extended web service transaction framework proposed by Alrifai et al (2006).
Alrifai’s framework was in fact an extension of the standard web service transaction protocol (as described by OASIS)
for supporting currency control. However, our framework has a number of significant improvements which addresses
each of the four-mechanisms proposed for incorporation into our proposed protocol. The framework has two (2) main
views or sides; the transaction coordinator (which has two services- the exception service and the coordinator service)
and transaction scheduler (which has two services- the scheduler service and secure tracer service). Each of these
components (mechanisms) can be implemented as a service in the framework to offer transactional and security
support for interoperable SOA-based systems in a distributed environment.

When a message is received from the coordinator, the exception service has to verify and validate the message. Once
this is done, the message is then passed on to the coordinator service. The coordinator receives all validated messages
and queues them properly using a queuing mechanism/application (such as Microsoft message queue, which ensure
FIFO arrangement and also a guarantee that all messages are intact in case of disconnected mode of message
communication). The coordinator passes the messages in this order to the scheduler service(within the transaction
scheduler) which is responsible for checking if there are conflicting transactions such as transactional dependencies
so that these can be properly handled before forwarding it possibly to the respective participants. The scheduler
maintains all the possible states of the web services (these states maybe similar to the ones defined by the WS-
BusinessActivity specification – completing, compensating, aborted, committed etc.). The secure tracer service records
every transaction sent to the participants (service providers). This information can be used to trace and report the
transaction for suspicious activities.

5.2 Conventional Enterprise Transaction System Built Using Web Services
This section shows how the proposed transaction maps to the conventional enterprise transaction system (see Figure
9). We assume that the sample transaction- that is, the procurement system is designed in line with the architecture of
a conventional enterprise transaction system.

163

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

5.2.1 Description of the Enterprise Transaction System Built using Web Services

Figure 9. Conventional Web Services Transaction Framework (Source: Connolly, 2004)

Assuming that the client invokes a web service synchronously, an immediate response to each request is required,
which implies forcing a two-way data exchange for every service interaction. When services need to carry out
synchronous communication, both service and service requester must be available and ready to complete the data
exchange. This can introduce reliability issues when either the service cannot guarantee its availability to receive the
request message, or the service requester cannot guarantee its availability to receive the response to its request.
Synchronous message exchanges can also impose processing overhead as the service requester needs to wait until
it receives a response from its original request before proceeding to its next action. Prolonged responses can introduce
latency by temporarily locking the consumer and service. Apart from this, synchronous communication can cause
overload of services required to facilitate a great deal of concurrent access. This is because services are expected to
process request as soon as they are received, and so usage thresholds can be more easily reached, thereby exposing
the service to multi-consumer latency or overall failure (Erl, 2009).

6. EVALUATION

This section presents how our novel architecture was evaluated. This has been achieved by carrying out an
architecture analysis and demonstrating how our model maps to the procurement system.

6.1 Architecture Analysis
This section presents an analysis of the architectural framework. In software architectural analysis, the software
architecture is evaluated against some criteria.” (Kazman, 2014). The three main drivers of this architectural analysis
are quality control, risk reduction and cost/benefit. The aim of architecture evaluation is “to analyze the software
architecture to identify potential risks and verify that the quality requirements have been addressed in the design. This
means that architectural evaluation is an architectural analysis with a specific analysis goal, which is to determine
whether the architecture design satisfies the requirements that are defined as architecturally significant requirements.

Server Application(s)

Database

Client
Application(s)

Web Server
Logs

164

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

The goal of the architecture evaluation is stated as follows:
Provide an enhanced architectural framework that will significantly improve transactional and security support for
interoperable SOA-based system by incorporating the following mechanisms:
(1) error-handling
(2) concurrency control
(3) consolidating multiple transactions call
(4) secure reporting and tracing for suspicious transactions

Architecture analysis can be performed manually or automatically. Manual analysis means that shareholders perform
architecture analysis without the use of dedicated tools. The definition of one or more analysis goals is the starting
point of each analysis. This paper adopted the four categories of analysis goals proposed by Taylor et al (2014) to
analyze our proposed architecture. The four categories are: completeness, consistency, compatible and correctness.

Completeness
This is made up of external completeness (i.e., whether all system requirements have been addressed in the
architectural design) and internal completeness (whether all important architectural elements have been defined and
whether all design decisions have been made). For this architecture we can confirm that all the requirements specified
in the goal have been addressed in the architecture. For example, we have included the Secure Tracer Service to allow
the administrator to correlate the sender’s and recipient messages in pairs and applies some security processing rules
to identify any suspicious messages or trace the source details from the central logging repository.

Consistency
This entails checking whether the defined architecture contains contradicting information (e.g., inconsistent names,
interfaces) or not. For this architecture, we have ensured that there are no redundant message and the flow of
interactions between the different components are consistent throughout the system.

Compatibility
This entails checking whether an architecture adheres to design guidelines and constraints defined by architectural
styles, and standards. For this architecture, we have checked the arrows uses to show exchange of messages are
consistent with whether the messages are asynchronously or synchronously.

Correctness
This entails performing the analysis with respect to some artefact of reference, for example, the specific system
requirements and implementation standards. For this architecture we checked that the architecture conforms to the
standard web service transaction framework. This was achieved by mapping the components of the proposed
architecture to the components on the standard framework after the traditional web service transaction framework was
extended and deploying the architecture with the procurement system.

For example, the three independent processes process1, process 2 and process 3 sends request/transactions to the
coordinator, which may reside on different machines and may also be implemented on different platforms. The
coordinator is responsible for creating the context and coordinating the different partners according to the applied
protocol. The coordinator role can be taken by the initiator of a distributed application or by a (trusted) third party.

165

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

6.2 Deployment of the Proposed Model with the Procurement System
In this section, we present a practical application of the proposed architecture. This is achieved by showing how the
deployment of the proposed model (which is an extension to the conventional web service transaction architecture) will
help to enhance transactional and security support for the procurement system (which represents an interoperable
SOA-based system).

6.2.1 Deploying the Proposed Model with the Procurement System
This section shows how the proposed model can be deployed with the procurement based on the standard web service
transaction (see Figure 10). We also describe specifically how each of the four mechanisms that we have introduced
into the web service transaction framework can be properly utilized.

Figure 10. The Procurement system uses the Web Service Transaction Framework. The processes are
concurrently and asynchronously involved in three different independent transactional contexts.

(i) Transaction Coordinator
The figure below (Figure 11) shows how three independent processes process1, process2 and process3 are trying to
send request/transactions to the coordinator. The coordinators (processes) may reside on different machines and may
also be implemented on different platforms. These processes are concurrent, distributed and asynchronous in nature.

Within the WS- transaction framework, there is no guarantee that all transactions passed from the coordinator to the
participant are in a secure and reliable (failsafe) manner. This is because most design and implementations of
distributed system assume that direct connections always exist. In reality, this is far from being true especially for
service-oriented systems where loosely coupled systems take part in transactions that last for a long time. In a service-
oriented system, processes communicate across heterogeneous networks and between computers and platform which
may not always be connected. Apart from this, transactions are not communicated in a unified programming model
compatible with other communications standards.

 Procurement System

P

Database

Transaction
manager

P

P

Process 3

Process 2

Process 1 Coordinator 1

Coordinator 1

Coordinator 1

166

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

Figure 11. The extended web service transaction framework manages three contexts. Transaction
Coordinator is deployed on the client’s side (the initiator of the distributed transactions), while the

transaction scheduler is deployed on the server-side (the service provider).

With the deployment of a WS-Transaction Coordinator as shown in the figure below, the problem of reliable delivery
can be addressed properly so that messages can be delivered reliably between applications inside and outside the
enterprise. The exception service will check and validate that all transactions carries with it all the necessary
parameters according to the agreed protocol of the initiator of the distributed transaction. Coordinator service places
the transactions that fail to reach their intended destination in a queue facility and then resends them once the
destination is reachable. It also supports security and priority based messaging. Later, dead letter queues may be
created for looking at transactions that timed out or failed for other reasons. The issue about transactions is the nature
and contents of the messages sent. The content of the transactions can be simple messages or objects. These objects
can be serialized and sent to the queue and then can be de-serialized and received by another application. Messages
sent from coordinator to participant (client to server) must be secure. A secure data transport mechanism ensures
confidentiality and reduce the risk of principal security spoofing.

(ii) Transaction Scheduler
Again, three independent processes process1, process 2 and process 3 access the purchase order subsystem of the
procurement system that was described in chapter one (motivating scenario). The three processes are coordinated by
three autonomous coordinators Coordinator 1, Coordinator 2 and Coordinator 3. These coordinators are represented
locally (within the procurement system) by three participants P1, P2 and P3. Potential transactional dependencies are
not visible to the three processes and therefore cannot be detected and handled.

Figure 11 shows what happens when the transaction scheduler is deployed, transactional dependencies can be
detected and handled properly. Apart from this, the transaction scheduler will also allow for secure tracking and
reporting of transactions for suspicious activities. This will be accomplished by the scheduler service and the secure
tracker service.

Procurement System
Database

Transaction
manager

Transaction
Scheduler

P P P

Process 1 Process 2 Process 3

Transaction
Coordinator

Coordinator1 Coordinator3 Coordinator2

167

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

In the extended framework, processes can no longer contact the web scheduler directly. They are queued in the
transaction coordinator before passing it to the web transaction scheduler)
At this point, we assume that there are no transactional dependencies between concurrent transactions and also there
is no global waiting cycles.

6.2.2 Deploying the Proposed Model with the Procurement System
In this case, we assume that the procurement system is a conventional enterprise transaction system built using several
web services components.

Figure 12. Deploying the proposed framework with convention enterprise transaction

system built with Web services

With the deployment of the transaction coordinator after the client application, a service can exchange messages with
its consumers via an intermediary buffer, allowing service and requester to process messages independently by
remaining temporarily decoupled. An asynchronous queuing technology is introduced into the framework (architecture)
as shown in Figure 12. The client application sends a message which is intercepted by the transaction coordinator
and stored in an intermediary queue. The Transaction scheduler pulls the message from the queue and sends it to the
application servers, and at the same time issues a log message to the database. The application servers then process
the message and then issue a log message to the database (or some other central logging system). The central
logging system in collaboration with a component in the transaction scheduler (secure tracer) can apply some security
processing logic to ensure that the suspicious messages are flagged for administrator’s attention. An option alert queue
can be created for storing these alert messages.

168

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

Asynchronous queuing technology can be completely transparent, meaning that neither the requester nor the service
may know that a queue was involved in a data exchange. This technology also ensures that Messages in transit are
not lost should a system failure occur.

6. CONCLUSION

This paper has presented an enhanced architectural framework for improving transactional and security support for
interoperable SOA-based systems, and to also improve the quality of service of the system. We presented the
traditional web service transactions framework and thereafter showed how to extend the traditional web service
transaction models to incorporate interoperable SOA-based systems using the procurement systems as a case study.
Firstly, we presented two traditional web service transactions framework. Secondly, we presented our proposed
transaction model and show how it maps to the traditional frameworks. Thirdly, we showed how to extend the traditional
web service transaction models to incorporate interoperable SOA-based systems using the procurement system as a
case study. Extensive evaluation of the architecture using architectural analysis shows that the architecture satisfies
the analysis goals, and system requirements, and is thus recommended for system designers and developers to
enhance transactional support for interoperable service-oriented systems. In future, we plan to investigate how an
interoperable SOA-based system can be deployed on the cloud to enhance distributed transactions, especially in a
multi-cloud environment.

169

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

REFERENCES

1. Arlitt, M and Jin, T.(1999). Workload Characterization of the 1998 World Cup Site. Technical Report HPL-

1999-359R.10, HP Laboratories Palo Alto

2. Laudati P.; Loeffler W.;, David Aiken, Arkitec, Keith Organ, Arkitec, Anthony Steven, Mike Preradovic, Wayne

Citrin, Peter Clift,(2003): Application Interoperability: Microsoft .NET and J2EE. Microsoft Corporation.

3. Little, M (2002): Web services transactions: past, present and future. Arjuna.com. Retrieved on October 31,

2011 from citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123...

4. Malrait, L, Marchnad, N., Bouchenak, S.(2009). Average Delay Guarantee in Server Systems Using

Admission Control.

5. Menasce, D., Almeida V., Dowdy, L. (2004). Performance By Design: Computer Capacity Planning by

Example. Pearson Education, Inc. New Jersey, USA.

6. Fisher, M., Sharma, S., Lai, R., & Moroney, L. (2006). Java EE and. Net interoperability: integration strategies,

patterns, and best practices. Prentice Hall Professional.

7. Computer Security Institute (2005). Cited in Fisher, M., Sharma, S., Lai, R., & Moroney, L. (2006). Java EE

and. Net interoperability: integration strategies, patterns, and best practices. Prentice Hall Professional. Page

403

8. Ochei, L. C (2012). Towards an Enhanced Protocol for Improving Transactional Support in Interoperable

Service Oriented Application-Based (SOA-Based) Systems.

9. Reddy P. and Bhalla S. (2003): Asynchronous operations in distribute Concurrency Control. IEEE

Transactions on Knowledge and Data engineering. Vol. 15, No.3. Retrieved on February 14, 2011 from

http://www.bme.ogi.edu/~hayest/cse541/Readings/reddy-distributed-concurrency-control-2003.pdf

10. Shyu S. C; Li, V.O.K. and Weng, C. P. (1990): “Performance Analysis of Static Locking in Distributed Database

Systems,” IEEE Trans. Computers, vol. 39, No. 6, pp. 741-751, June 1990.

11. Sinha, M.K and Natarajan, N.(1985). A Priority Based Distributed Deadlock Detection Algorithm,” IEEE Trans.

Software Eng., vol. 11, pp. 67-80, Jan. 1985.

12. Sommerville, I. (2007). Software Engineering (Eight Edition). Pearson Education Limited, Harlow, England.

13. Kaye, D.(2004). Web-Services Transactions: From Loosely Coupled - The Missing Pieces of Web Services.

XML: Article. SYS-CON Media. Retrieved on August 28, 2012 from http://xml.sys-con.com/node/43755

14. Weikum, G.(1991). Principles and realization strategies of multilevel transaction management. ACM

Transactions on Database Systems, vol. 16, no. 1, 1991, pp. 132-180.

15. Erl, Thomas (2009). SOA Design Patterns. Pearson Education, Inc. New Jersey, USA.

170

Computing, Information Systems, Development Informatics & Allied Research Journal
Vol. 11 No. 2, June 2020 - www.isteams.net/cisdijournal

16. Buchgeher, G., & Weinreich, R. (2014). Continuous software architecture analysis. In Agile Software

Architecture (pp. 161-188). Morgan Kaufmann.

17. Taylor RN, Medvidovic N, Dashofy EM. Software architecture: foundations, theory, and practice. New Jersey:

Wiley; 2009.

18. Kazman R, Bass L, KleinM, Lattanze T, Northrop L. A basis for analyzing software architecture analysis

methods. Software Qual J 2005;13:329–55, Kluwer Academic Publishers.

