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ABSTRACT 

 
Communication and other related costs has been a major concern when discussing distributed database 
system since data often reside in different sites that are dispersed over long distances. These costs can 
be minimized by partitioning tables into smaller fragments. This paper proposed the genetic algorithm 
technique for allocating fragments in a distributed database. The choice of the genetic algorithm is 
important because the technique can handle data over large databases or sites that are geographically 
spread across large distances. Also, genetic algorithm provide a platform for natural selection and 
evolution since it is a robust and adaptive method for solving search and optimization problems in a large 
irregular search space. Thus genetic algorithm is used to determine the most efficient allocation 
procedure. Finally, we show through experimental analysis, that the procedure adopted produced solution 
that is better and optimal when compared with the results obtained by other researchers in terms of the 
run time and hence costs of communication and other associated costs.  
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1. INTRODUCTION 
 
Data allocation is an important factor when considering the design of distributed databases and database 
systems in general [1] [2] [3]. However, finding optimal solutions as a means of resolving data allocation 
issue in distributed databases is of major concern and a serious challenge to database developers. This 
is mainly due to the fact that several sites or databases that are geographically spread at relatively long 
distances holds fragments of the data to be allocated. If a distributed database is not properly developed, 
the implication is that a lot of time and resources will be expended on allocating such data and this could 
increase costs of information distribution and retrieval drastically. Thus in designing a distributed 
database, a lot of factors must be put into consideration if such a database must be optimal in terms of 
costs, efficiency, and data contained in them must be easily accessible to users on demand. Data or 
fragment allocation is used to determine the best location for each data fragment. Fragment allocation is 
a problem with high complexity as a result; it is a Non-deterministic Polynomial (NP)-complete problem. 
Hence many suggestions have been proposed in the past to reduce its complexity [4] [5] [6] [7].  
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A distributed database system (DDBS) [8] [9] [10] is a collection of sites connected by a communication 
network, in which each site is a database system in its own right, but the sites have agreed to work 
together, so that a user at any site can access data anywhere in the network exactly as if the data were 
all stored at the user’s own site [11] [12]. The essence of developing a DDBS is to meet the information 
requirements of organizations whose businesses involve distributed operations in their day to day 
transactions. This was accelerated by the advancement in telecommunication systems, hence such 
business organizations have branches or facilities where their computer systems are connected together 
with some communication links.  Data or fragment allocation technique is used to determine the best 
location for each data fragment. Fragment allocation is a problem with high complexity as a result; it is a 
Non-deterministic Polynomial (NP)-complete problem. Hence many suggestions have been proposed in 
the past to reduce its complexity [13] [14].  
 
Fragmentation is important because it improves the performance of the DDBMS; this is done by an 
increase in the efficiency of DDBMS and making sure that data are stored only where it is needed. 
Storing data where it is needed is achieved through a process called fragment allocation [15] [16]. 
Fragmentation is a design technique to divide a single relation or class of a database into two or more 
partitions such that the combination of the partitions provides the original database without loss of 
information [17]. Three types of fragmentation include: horizontal, vertical and hybrid or mixed 
fragmentation.  
 
Fragmentation helps to minimize the quantity of unrelated data accessed in the DDBMS by the 
application running on it, which in turn reduces the frequency of data accesses. In fragment allocation, 
fragments are placed at the sites of DDBS. This is done to minimize the data transfer costs which include: 
cost of querying, cost of storing and cost of updating while application is being processed; which are the 
major problems of fragment allocation. Hence, each fragment is allocated to a location within a distributed 
environment such that the system functions more effectively and efficiently [18] [19].  
 
In this paper, Genetic Algorithm (GA) [20] [21] is used for optimal allocation of data fragments in 
distributed databases. Genetic Algorithms are search procedures modeled on natural selection and 
evolution that is very robust for solving and optimization problems. They are mostly used for solving 
problems that has large irregular search space and for problems that are very complex and the best 
solution is obtained after navigating through a large search space. The best solution is gotten after 
searching through a large search space of complex problems [22] [23] [24] [25].  
 
GA uses the same pattern which human genetic process operates in arriving at solution to problems. It 
also genetic algorithm provide a platform for natural selection and evolution since it is a robust and 
adaptive method for solving search and optimization problems in a large irregular search space [26] [27]. 
Thus genetic algorithm is used to determine the most efficient allocation procedure. This work is aimed at 
seen how fragments can be allocated in distributed databases more easily and efficiently. In this paper, 
we proposed the genetic algorithm technique for allocating fragments in a distributed database. The 
choice of the genetic algorithm became imperative because the algorithm can handle data over large 
database or sites that are geographically spread across large distances.  
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2. RESEARCH PROBLEM 
 
Communication cost has been a major concern when discussing distributed database system since data 
often reside in different sites that are geographically dispersed. This cost can be minimized by partitioning 
tables into smaller fragments. This can be done horizontally, vertically, or mixed, a condition often 
referred to as mixed fragmentation. The fragments are then allocated or re-allocated to network sites 
where they can be easily accessed. This is done to ensure that most data resides in local databases for 
easy access as opposed to remote accesses which could cause delay and incur high costs. An important 
challenge in fragment allocation is how to allocate the fragment to achieve the minimal communication 
cost. Many previous researches have proposed network sites clustering as a solution to minimizing 
communication cost. In these works, sites which have similar communication costs are placed together so 
as to increase the performance of the distributed database system. Fragments are allocated to clusters 
and subsequently allocated to network sites.  
 
One major setback in these research works is that the clustering technique is mostly conducted on a 
small scale distributed database. The implication is that as the volume of distributed database increases 
nowadays there is need for an efficient technique which can be used to handle fragment allocation. This 
paper proposed the genetic algorithm technique for allocating fragments in a distributed database. The 
choice of the genetic algorithm is important because the technique can handle data covers a large 
distances or database that are geographically spread across large distances. Also, genetic algorithm 
provide a platform for natural selection and evolution since it is a robust and adaptive method for solving 
search and optimization problems in a large irregular search space. 
 
3. METHODOLOGY 
 
As seen in figure 1, the genetic algorithm an initial population to determine the run time allocation of 
fragments for sites and generate allocation solution. This is done using the genetic operators: selection, 
crossover, and mutation which are discussed fully in figure 2. Figure 2 shows the detail or lower level 
design for figure 1. Detail in the sense that the various activities and steps involved in the genetic process 
are fully represented and discussed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: The genetic algorithm for determining cost function for sites and allocation solution 
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In figure 2, the initial solution of the entire population is evaluated and calculating their fitness. The 
selection is done using the selection operator for individual with lower fitness function to guarantee lower 
cost. The pairs of individuals randomly selected are the crossover using the crossover operation. After 
this, the mutation operator is applied to the selected population by computing individual’s fitness level and 
sometimes altering the a random bit in a string for the worst fitness individuals in order to obtain better 
individuals with good genetic traits.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Detail design of allocating fragments using the generic algorithm. 
 
 
Based on this, new solution of offspring is produced from the old generation. The process is repeated 
until the final population is selected. Figure 2 shows the detailed diagram of the genetic algorithm 
procedure and steps. The final result is the allocated solutions produced. 
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3.1 The Genetic Algorithm Operators 
To obtain the best and optimal solution, GA uses some operators. These are: selection, crossover and 
mutation. These operators are applied to an initial population of solutions to generate a new and better 
population of solutions. The initial population comprises of many chromosomes or strings each of which 
represents a solution to the problem. The fitness function is computed for each individual solution after 
which GA operators are applied to the population to generate a new one. The input is subjected to these 
operators iteratively in order to obtain the optimum solution. Each iteration is called a generation. Each 
generation obtained after iteration is better and closer to the optimum solution. The iteration is continued 
until the best solution is obtained.   
 
 
i. The Selection Operator 
The selection operator selects the individuals (chromosomes or strings) which have a lower fitness 
function value. Individuals with a lower fitness represent the ones with lower communication cost, thus 
they have higher probability of being selected. After selection crossover is performed on them.  
 
ii. The Crossover Operator 
Crossover is very similar to what is obtainable in reproduction. Pairs of individuals are randomly selected 
for the crossover operation is performed on them. After the crossover, new pair of individuals with better 
fitness level is obtained when compared with the parents.  Crossover is performed on these individuals by 
combining different parts of the selected string to form a new pair of string. The resultant off springs 
obtained is accepted only if it has a better fitness than the parent strings is then added to the new 
population which then replaces the individuals that have been performing poorly in the previous 
population 
 
iii. The Mutation Operator 
After crossover, the mutation operator is applied to the population. This is done by computing individual’s 
fitness level and occasionally altering a random bit in a string for the worst fitness individuals in order to 
obtain better individuals with good genetic traits. This process is repeated until an optimal (or near 
optimal) solutions are obtained. In each generation, the generated individuals will always replace the 
worst fitness individual in the population. After completing the iteration by genetic algorithm on the 
population of solutions, an optimal or near optimal solution is obtained. This solution is then used 
determine the final fragment allocation to the individual network sites.  
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3.2 The Fragment allocation algorithm  
GA is applied on each site with the fragments divided into F elements (parts) where each element 
represent a fragment in the database 
 

Algorithm 1: Fragment allocation algorithm 

  1. Input: Data to be fragmented 
  2. Output: Fragmented data allocated to sites 
  3. begin 
  4.    for all members of population 
  5.         sum += fitness of some individuals 
  6.    end //end for 
  7.       for all members of population 
  8.          probability = sum of probabilities + (fitness / sum) 
 9.          sum of probabilities += probability 
10.       end //end for 
11.      while sum <  population // cost function is high 
12.      do this twice 
13.         number = Random between 0 and 1 
14.         repeat 
15.             for all members of population 
16.                 if number > probability but less than next probability then select 
17.                 end if  
18.             end //end for 
19.               create fragments 
20.         until new allocation is complete //optimum solution with lower cost function 
21.      end //end loop 
22.    end. 

 
Fig. 3: Fragment allocation algorithm 

 
Algorithm 1 is a genetic algorithm used to fragment data located in different sites for easy access.  First, 
the algorithm determines the total number of individuals in the population. It then performs crossover to 
produce offspring based on the genetic mutation of the individuals selected. This process continues until 
the best individuals with good fitness and best genetic traits are produced. 
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4. RESULTS AND DISCUSSION 
 
To obtain a solution of representation by GA where F fragments is allocated to S sites, fourteen (14) sites 
were considered.  Each element has an integer value which represents the site where the fragment is 
proposed to be allocated.  
 
Table 4.2: Experimental Result 

No of Sites Rizik et al. (2014) Abdalla (2012) Singn et al. (2014) Proposed GPA 

Time(sec) Time(sec) Time(sec) Time(sec) 

1 1.126 1.201 1.32 0.83 

2 1.354 1.412 1.702 1.162 

3 1.503 2.04 2.8 1.05 

4 2.087 2.542 3.01 2.25 

5 3.501 4.212 5.5 3.18 

6 5.194 7.505 6.82 4.32 

7 7.964 12.324 11.2 5.67 

8 9.385 14.152 14 7.58 

9 11.011 17.511 16 8.76 

10 11.521 18.31 16.7 9.45 

11 11.882 18.61 18.3 10.25 

12 11.951 19.31 19.01 8.76 

13 12.169 19.72 19.54 9.39 

14 12.815 20.501 19.75 8.62 

 
After computing, the computation time of the results obtained were compared with the results of previous 
related works. From the result we can conclude that GA effectively gives optimal result and this result 
even improves as the number of sites increases. A graph of these comparisons is plotted as shown in 
figure 3. 
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Fig. 3: Graph Showing Result Comparison. 
 

 
The Figure illustrate the effectiveness of the proposed fragment allocation model in terms of the average 
computation time over the three other fragment allocation techniques as seen in the graph. Thus figure 3 
shows that our algorithm has a better performance in terms of time complexity and that the result has 
least average computation time needed to allocate fragments to network sites where they are needed. 
Moreover, it can be inferred that the average computation time for fragment allocation increases as the 
number of sites increases and vice versa. Hence, our algorithm produces a better and more optimal 
solution. 
 
5. CONCLUSION 
 
Data allocation is an important factor when considering the design of distributed databases and database 
systems in general. However, finding optimal solutions as a means of resolving data allocation issue in 
distributed databases is of major concern and a serious challenge to database developers. This is mainly 
due to the fact that several sites or databases that are geographically spread are holding fragments of the 
data to be allocated. If a distributed database is not properly developed, the implication is that a lot of time 
and resources will be expended on allocating such data and this could increase costs of information 
distribution and retrieval drastically. Thus in designing a distributed database, a lot of factors must be put 
into consideration if such a database must be optimal in terms of costs, efficiency, and data contained in 
them must be easily accessible to users on demand. In this paper, genetic algorithm is used to find the 
best allocation of fragments to sites in a distributed database system. The choice of the genetic algorithm 
is based on fact that the technique can handle data over large database or sites that are geographically 
spread across large distances. Also, genetic algorithm provide a platform for natural selection and 
evolution since it is a robust and adaptive method for solving search and optimization problems in a large 
irregular search space. Thus genetic algorithm is used to determine the most efficient allocation 
procedure. Finally, we show through experimental analysis, that the procedure adopted produced solution 
that are closer to optimal solution when compared with the results obtained by other researchers.  
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