

63

Vol. 4 No.1,

Using Genetic Algorithm for Optimal Allocation of Data Fragments in
Distributed Database Systems

Ogheneovo, E.E.

Department of Computer Science
University of Port Harcourt

Port Harcourt, Nigeria.
edward_ogheneovo@yahoo.com

Okoye, C.

Department of Computer Science
University of Port Harcourt

Port Harcourt, Nigeria.
noblelink123@gmail.com

ABSTRACT

Communication and other related costs has been a major concern when discussing distributed database
system since data often reside in different sites that are dispersed over long distances. These costs can
be minimized by partitioning tables into smaller fragments. This paper proposed the genetic algorithm
technique for allocating fragments in a distributed database. The choice of the genetic algorithm is
important because the technique can handle data over large databases or sites that are geographically
spread across large distances. Also, genetic algorithm provide a platform for natural selection and
evolution since it is a robust and adaptive method for solving search and optimization problems in a large
irregular search space. Thus genetic algorithm is used to determine the most efficient allocation
procedure. Finally, we show through experimental analysis, that the procedure adopted produced solution
that is better and optimal when compared with the results obtained by other researchers in terms of the
run time and hence costs of communication and other associated costs.

Keywords: Database, genetic algorithm, fragment allocation, optimal solution & search algorithm

Aims Research Journal Reference Format:
Ogheneovo, E.E. & Okoye, C. (2017): Using Genetic Algorithm for Optimal Allocation of Data Fragments in Distributed Database
Systems. Advances in Multidisciplinary & Scientific Research Journal. Vol. 3. No.1, Pp 63-72

1. INTRODUCTION

Data allocation is an important factor when considering the design of distributed databases and database
systems in general [1] [2] [3]. However, finding optimal solutions as a means of resolving data allocation
issue in distributed databases is of major concern and a serious challenge to database developers. This
is mainly due to the fact that several sites or databases that are geographically spread at relatively long
distances holds fragments of the data to be allocated. If a distributed database is not properly developed,
the implication is that a lot of time and resources will be expended on allocating such data and this could
increase costs of information distribution and retrieval drastically. Thus in designing a distributed
database, a lot of factors must be put into consideration if such a database must be optimal in terms of
costs, efficiency, and data contained in them must be easily accessible to users on demand. Data or
fragment allocation is used to determine the best location for each data fragment. Fragment allocation is
a problem with high complexity as a result; it is a Non-deterministic Polynomial (NP)-complete problem.
Hence many suggestions have been proposed in the past to reduce its complexity [4] [5] [6] [7].

64

Vol. 4 No.1,

A distributed database system (DDBS) [8] [9] [10] is a collection of sites connected by a communication
network, in which each site is a database system in its own right, but the sites have agreed to work
together, so that a user at any site can access data anywhere in the network exactly as if the data were
all stored at the user’s own site [11] [12]. The essence of developing a DDBS is to meet the information
requirements of organizations whose businesses involve distributed operations in their day to day
transactions. This was accelerated by the advancement in telecommunication systems, hence such
business organizations have branches or facilities where their computer systems are connected together
with some communication links. Data or fragment allocation technique is used to determine the best
location for each data fragment. Fragment allocation is a problem with high complexity as a result; it is a
Non-deterministic Polynomial (NP)-complete problem. Hence many suggestions have been proposed in
the past to reduce its complexity [13] [14].

Fragmentation is important because it improves the performance of the DDBMS; this is done by an
increase in the efficiency of DDBMS and making sure that data are stored only where it is needed.
Storing data where it is needed is achieved through a process called fragment allocation [15] [16].
Fragmentation is a design technique to divide a single relation or class of a database into two or more
partitions such that the combination of the partitions provides the original database without loss of
information [17]. Three types of fragmentation include: horizontal, vertical and hybrid or mixed
fragmentation.

Fragmentation helps to minimize the quantity of unrelated data accessed in the DDBMS by the
application running on it, which in turn reduces the frequency of data accesses. In fragment allocation,
fragments are placed at the sites of DDBS. This is done to minimize the data transfer costs which include:
cost of querying, cost of storing and cost of updating while application is being processed; which are the
major problems of fragment allocation. Hence, each fragment is allocated to a location within a distributed
environment such that the system functions more effectively and efficiently [18] [19].

In this paper, Genetic Algorithm (GA) [20] [21] is used for optimal allocation of data fragments in
distributed databases. Genetic Algorithms are search procedures modeled on natural selection and
evolution that is very robust for solving and optimization problems. They are mostly used for solving
problems that has large irregular search space and for problems that are very complex and the best
solution is obtained after navigating through a large search space. The best solution is gotten after
searching through a large search space of complex problems [22] [23] [24] [25].

GA uses the same pattern which human genetic process operates in arriving at solution to problems. It
also genetic algorithm provide a platform for natural selection and evolution since it is a robust and
adaptive method for solving search and optimization problems in a large irregular search space [26] [27].
Thus genetic algorithm is used to determine the most efficient allocation procedure. This work is aimed at
seen how fragments can be allocated in distributed databases more easily and efficiently. In this paper,
we proposed the genetic algorithm technique for allocating fragments in a distributed database. The
choice of the genetic algorithm became imperative because the algorithm can handle data over large
database or sites that are geographically spread across large distances.

65

Vol. 4 No.1,

2. RESEARCH PROBLEM

Communication cost has been a major concern when discussing distributed database system since data
often reside in different sites that are geographically dispersed. This cost can be minimized by partitioning
tables into smaller fragments. This can be done horizontally, vertically, or mixed, a condition often
referred to as mixed fragmentation. The fragments are then allocated or re-allocated to network sites
where they can be easily accessed. This is done to ensure that most data resides in local databases for
easy access as opposed to remote accesses which could cause delay and incur high costs. An important
challenge in fragment allocation is how to allocate the fragment to achieve the minimal communication
cost. Many previous researches have proposed network sites clustering as a solution to minimizing
communication cost. In these works, sites which have similar communication costs are placed together so
as to increase the performance of the distributed database system. Fragments are allocated to clusters
and subsequently allocated to network sites.

One major setback in these research works is that the clustering technique is mostly conducted on a
small scale distributed database. The implication is that as the volume of distributed database increases
nowadays there is need for an efficient technique which can be used to handle fragment allocation. This
paper proposed the genetic algorithm technique for allocating fragments in a distributed database. The
choice of the genetic algorithm is important because the technique can handle data covers a large
distances or database that are geographically spread across large distances. Also, genetic algorithm
provide a platform for natural selection and evolution since it is a robust and adaptive method for solving
search and optimization problems in a large irregular search space.

3. METHODOLOGY

As seen in figure 1, the genetic algorithm an initial population to determine the run time allocation of
fragments for sites and generate allocation solution. This is done using the genetic operators: selection,
crossover, and mutation which are discussed fully in figure 2. Figure 2 shows the detail or lower level
design for figure 1. Detail in the sense that the various activities and steps involved in the genetic process
are fully represented and discussed.

Fig. 1: The genetic algorithm for determining cost function for sites and allocation solution

Final Fragment Allocation

Allocate

Fragments to Sites

Determine Allocation

run time for Sites and

Generate Allocation

Solutions

Subject Solution to Genetic Operation

Apply Genetic

Algorithm to

initial population

Network Sites

with Allocated

66

Vol. 4 No.1,

In figure 2, the initial solution of the entire population is evaluated and calculating their fitness. The
selection is done using the selection operator for individual with lower fitness function to guarantee lower
cost. The pairs of individuals randomly selected are the crossover using the crossover operation. After
this, the mutation operator is applied to the selected population by computing individual’s fitness level and
sometimes altering the a random bit in a string for the worst fitness individuals in order to obtain better
individuals with good genetic traits.

Fig. 2: Detail design of allocating fragments using the generic algorithm.

Based on this, new solution of offspring is produced from the old generation. The process is repeated
until the final population is selected. Figure 2 shows the detailed diagram of the genetic algorithm
procedure and steps. The final result is the allocated solutions produced.

If Final Solution Stop and Allocate Else

Replace Initial Population with New

Population

New Generation

(Offspring)

Initial Solutions

Population

New Solutions

Population

Apply Evaluation

(Calculate Fitness)

Selection

Crossover

Mutation

Genetic

Operators

Result of Allocation

Solutions

67

Vol. 4 No.1,

3.1 The Genetic Algorithm Operators
To obtain the best and optimal solution, GA uses some operators. These are: selection, crossover and
mutation. These operators are applied to an initial population of solutions to generate a new and better
population of solutions. The initial population comprises of many chromosomes or strings each of which
represents a solution to the problem. The fitness function is computed for each individual solution after
which GA operators are applied to the population to generate a new one. The input is subjected to these
operators iteratively in order to obtain the optimum solution. Each iteration is called a generation. Each
generation obtained after iteration is better and closer to the optimum solution. The iteration is continued
until the best solution is obtained.

i. The Selection Operator
The selection operator selects the individuals (chromosomes or strings) which have a lower fitness
function value. Individuals with a lower fitness represent the ones with lower communication cost, thus
they have higher probability of being selected. After selection crossover is performed on them.

ii. The Crossover Operator
Crossover is very similar to what is obtainable in reproduction. Pairs of individuals are randomly selected
for the crossover operation is performed on them. After the crossover, new pair of individuals with better
fitness level is obtained when compared with the parents. Crossover is performed on these individuals by
combining different parts of the selected string to form a new pair of string. The resultant off springs
obtained is accepted only if it has a better fitness than the parent strings is then added to the new
population which then replaces the individuals that have been performing poorly in the previous
population

iii. The Mutation Operator
After crossover, the mutation operator is applied to the population. This is done by computing individual’s
fitness level and occasionally altering a random bit in a string for the worst fitness individuals in order to
obtain better individuals with good genetic traits. This process is repeated until an optimal (or near
optimal) solutions are obtained. In each generation, the generated individuals will always replace the
worst fitness individual in the population. After completing the iteration by genetic algorithm on the
population of solutions, an optimal or near optimal solution is obtained. This solution is then used
determine the final fragment allocation to the individual network sites.

68

Vol. 4 No.1,

3.2 The Fragment allocation algorithm
GA is applied on each site with the fragments divided into F elements (parts) where each element
represent a fragment in the database

Algorithm 1: Fragment allocation algorithm

 1. Input: Data to be fragmented
 2. Output: Fragmented data allocated to sites
 3. begin
 4. for all members of population
 5. sum += fitness of some individuals
 6. end //end for
 7. for all members of population
 8. probability = sum of probabilities + (fitness / sum)
 9. sum of probabilities += probability
10. end //end for
11. while sum < population // cost function is high
12. do this twice
13. number = Random between 0 and 1
14. repeat
15. for all members of population
16. if number > probability but less than next probability then select
17. end if
18. end //end for
19. create fragments
20. until new allocation is complete //optimum solution with lower cost function
21. end //end loop
22. end.

Fig. 3: Fragment allocation algorithm

Algorithm 1 is a genetic algorithm used to fragment data located in different sites for easy access. First,
the algorithm determines the total number of individuals in the population. It then performs crossover to
produce offspring based on the genetic mutation of the individuals selected. This process continues until
the best individuals with good fitness and best genetic traits are produced.

69

Vol. 4 No.1,

4. RESULTS AND DISCUSSION

To obtain a solution of representation by GA where F fragments is allocated to S sites, fourteen (14) sites
were considered. Each element has an integer value which represents the site where the fragment is
proposed to be allocated.

Table 4.2: Experimental Result

No of Sites Rizik et al. (2014) Abdalla (2012) Singn et al. (2014) Proposed GPA

Time(sec) Time(sec) Time(sec) Time(sec)

1 1.126 1.201 1.32 0.83

2 1.354 1.412 1.702 1.162

3 1.503 2.04 2.8 1.05

4 2.087 2.542 3.01 2.25

5 3.501 4.212 5.5 3.18

6 5.194 7.505 6.82 4.32

7 7.964 12.324 11.2 5.67

8 9.385 14.152 14 7.58

9 11.011 17.511 16 8.76

10 11.521 18.31 16.7 9.45

11 11.882 18.61 18.3 10.25

12 11.951 19.31 19.01 8.76

13 12.169 19.72 19.54 9.39

14 12.815 20.501 19.75 8.62

After computing, the computation time of the results obtained were compared with the results of previous
related works. From the result we can conclude that GA effectively gives optimal result and this result
even improves as the number of sites increases. A graph of these comparisons is plotted as shown in
figure 3.

70

Vol. 4 No.1,

Fig. 3: Graph Showing Result Comparison.

The Figure illustrate the effectiveness of the proposed fragment allocation model in terms of the average
computation time over the three other fragment allocation techniques as seen in the graph. Thus figure 3
shows that our algorithm has a better performance in terms of time complexity and that the result has
least average computation time needed to allocate fragments to network sites where they are needed.
Moreover, it can be inferred that the average computation time for fragment allocation increases as the
number of sites increases and vice versa. Hence, our algorithm produces a better and more optimal
solution.

5. CONCLUSION

Data allocation is an important factor when considering the design of distributed databases and database
systems in general. However, finding optimal solutions as a means of resolving data allocation issue in
distributed databases is of major concern and a serious challenge to database developers. This is mainly
due to the fact that several sites or databases that are geographically spread are holding fragments of the
data to be allocated. If a distributed database is not properly developed, the implication is that a lot of time
and resources will be expended on allocating such data and this could increase costs of information
distribution and retrieval drastically. Thus in designing a distributed database, a lot of factors must be put
into consideration if such a database must be optimal in terms of costs, efficiency, and data contained in
them must be easily accessible to users on demand. In this paper, genetic algorithm is used to find the
best allocation of fragments to sites in a distributed database system. The choice of the genetic algorithm
is based on fact that the technique can handle data over large database or sites that are geographically
spread across large distances. Also, genetic algorithm provide a platform for natural selection and
evolution since it is a robust and adaptive method for solving search and optimization problems in a large
irregular search space. Thus genetic algorithm is used to determine the most efficient allocation
procedure. Finally, we show through experimental analysis, that the procedure adopted produced solution
that are closer to optimal solution when compared with the results obtained by other researchers.

A
v

er
ag

e
C

o
m

p
u

ta
ti

o
n

 T
im

e

71

Vol. 4 No.1,

REFERENCES

1. Tiwari, P. and Chande, S. V. (2013). Optimization of Distributed Database Queries Using Hybrids

of Ant Colony optimization Algorithm. Int’l Journal of Advanced Research in computer Science
and Software Engineering, Vol. 3, Issue 6, pp. 609-614.

2. Reid, D. J. (1997). Minimizing the Response Time of Executing a Join between Fragmented
Relations in a Distributed Database System. Mathematical Computer Modelling, Vol. 25, No. 1,
pp. 59-75.

3. Tosun, U. (2014). Distributed Database Design Using Evolutionary Algorithms. Journal of
Communications and Networks, Vol. 16, Issue 4, pp. 430-435. doi: 10.1109/JCN.2014.000073.

4. Ahmad, I., Karlapalem, K., Kwok, Y.-K., and So, S.-K. (2002). Evolutionary Algorithms for
Allocating Data in Distributed Database Systems. Distributed and Parallel Databases, Vol. 11,
Issue 1, pp. 5-32. doi: 10.1023/A:1013324605452.

5. Zynali, M. and Khanli, L. M. (2010). Fuzzy Based Approach for Load Balanced Distributed
Database on Senor Network. Int’l Journal of Future Generation Communication and Networking,
Vol. 3, No. 2, pp. 41-52.

6. Abdalla, H. I. (2011). Improving Data Management in a Distributed Environment. Journal of Digital
Information Management, Vol. 9, No. 3, pp. 122-125.

7. Jagannatha, S., Geetha, D. E., Kumar, T. V. S., and Kanth, K. R. (2013). Load Balancing in
Distributed Database System Using Resource Allocation Approach. Int’l Journal of Advanced
Research in Computer and Communication Engineering, Vol. 2, Issue 7, pp. 2529-2535.

8. Kaur, P. (2015). Query Optimization. Int’l Journal of Engineering Science and Computing, pp.
1547-1550. doi: 10.4010/2015.389.

9. Gope, D. C. (2012). Dynamic Data Allocation Methods in Distributed Database System, American
Academic & Scholarly Research Journal Vol. 4, No. 6, pp. 1-8.

10. Sarhan, A. (2009). A New Allocation Technique for Methods and Attributes in Distributed Object-
Oriented Databases Using Genetic Algorithms. The Int’l Arab Journal of Information Technology,
Vol. 6, No. 1, pp. 17-26.

11. Raipurkar, A. and Bamnote, G. R. (2013). Query Optimization in Distributed Database System.
Int’l Journal of Computer Science and Application, Vol. 6, No. 2, pp. 319-322.

12. Karlapalem, K., Ahmad, I., So, S.-K., and Kwok, Y.-K. (1997). Empirical Evaluation of Data
Allocation Algorithms for Distributed Multimedia Database Systems. In Proceedings of IEEE
Computer Society’s Int’l Computer Software and Applications Conference, Vol., No., pp. 296-301.

13. Singh, A., Khalon, K. S. and Virk, R. S. (2014). Nonreplicated Static Data Allocation in Distributed
Databases Using Biogeography-Based Optimization, Chinese Journal of Engineering, Vol. 2014,
pp. 1-9.

14. Sleit, A., AlMobaideen, W., Al-Areqi, S. and Yahya, A. (2007). American Journal of Applied
Sciences, Vol. 4, No. 8, pp. 613-618.

15. Singh, A. and Khalon, K. S. (2009). Non-Replicated Dynamic Data Allocation in Distributed
Database Systems. Int’l Journal of Computer Science and Network Security, Vol. 9, No. 9, pp.
176-180.

16. Motzkin, D. and Yurk, P. D. (1990). A Data Distribution Model for Distributed Relational
Databases with Dissimilar Computers and Network Costs, Mathematics and Computer
Modelling, Vol. 14, pp. 172-177.

17. Amalarethinam, D. I. G. and Balakrihnan, C. (2012). A Study on Performance Evaluation of Peer-
to-Peer Distributed Databases. IOSR Journal of Engineering, Vol. 2, No. 5, pp. 1168-1176.

18. Salunuke, D. and Potdar, G. P. (2014). A Survey Paper on Database Partitioning. Int’l Journal of
Advanced Research in Computer Science & Technology, Vol. 2, Issue 3, pp. 210-212.

19. Amalarethinam, D. I. G. and Balakrihnan, C. (2013). oDASuANCO – Ant colony Optimization
Based Data Allocation Strategy in Peer-to-Peer Distributed Databases. Int’l Journal of Enhanced
Research in Science, Technology & Engineering, Vol. 2, Issue 3, pp. 1-8.

72

Vol. 4 No.1,

20. Huang, Y.-F. and Chan, J.-H. (2001). Fragment Allocation in Distributed Database Design.
Journal of information Science and Engineering, Vol. 17, pp. 491-506.

21. Rho, S. and March, S. T. (1994). A Nested Genetic Algorithm for Distributed Design. In
Proceedings of the 27

th
 Annual Hawaii Int’l Conference in System Sciences, pp. 33-42.

22. Kumar, R. and Gupta, N. (2012). Non-Redundant Dynamic Data Allocation in Distributed
Database Systems. Special Issue of Int’l Journal of Computer Applications on Issues and
Challenges in Networking, Intelligence, and Computing Technologies –ICNICT 2012, pp. 6-10.

23. Padia, S., Khulge, S., Gupta, A. and Khadilikar, P. (2015). Query Optimization Strategies in
Distributed Databases. Int’l Journal of Computer Science and Information Technologies, Vol. 6,
No. 5, pp. 4228-4243.

24. Amalarethinam, D. I. G. and Balakrihnan, C. (2015). An Optimized Strategy for Data Allocation in
Peer-To-Peer Distributed Databases. Int’l Journal of Fuzzy Mathematical Archive, Vol. 6, No. 2,
pp. 187-195.

25. Hababeh, I. O., Bowring, N. and Ramachandran, M. (2003). An Integrated Strategy for Data
Fragmentation and Allocation in a Distributed database Design. In Proceedings of Int’l
Conference on Information Technology and Natural Sciences,

26 Apers, P. M. G. (1988). Data Allocation in Distributed Database Systems. Journal of ACM
Transactions on Database Systems (TODS), Vol. 13, Issue 3, pp. 263-304. doi:
10.1145/44498.45063.

27. Corcoran, A. L. M. and Hale J. (1994). A Genetic Algorithm for Fragment Allocation in Distributed
Database System. In Proceedings of the SAC’94 ACM Symposium on Applied computing, pp.
247-250, March 6-8, 1994, Phoenix, Arizona, USA. doi: 10.1145/326619.326738.

