

33

Vol. 3 No.2, June , 2017

A Modified Activation Function with Improved Run-Times
for Neural Networks

Anireh, V.I.E.

Department of Computer Science
Rivers State University of Science and Technology

Port-Harcourt
Rivers State, Nigeria.

E-mail: anireh.ike@ust.edu.ng

 Osegi, E.N.
System Analytics Laboratories (SAL)

Sure-GP Ltd
Port-Harcourt

Rivers State, Nigeria.
E-mail: nd.osegi@sure-gp.com

ABSTRACT

In this paper we present a modified version of the Hyperbolic Tangent Activation Function as a learning unit generator
for neural networks. The function uses an integer calibration constant as an approximation to the Euler number, e,
based on a quadratic Real Number Formula (RNF) algorithm and an adaptive normalization constraint on the input
activations to avoid the vanishing gradient. We demonstrate the effectiveness of the proposed modification using a
hypothetical and real world dataset and show that lower run-times can be achieved by learning algorithms using this
function leading to improved speed-ups and learning accuracies during training.

Keywords: Adaptive Normalization, Hyperbolic Tangent Activation Function, Neural Networks, Real Number
 Formula, Vanishing Gradient Problem

Aims Research Journal Reference Format:
Anireh, V.I.E.. & Osegi, E.N. (2017): A Modified Activation Function with Improved Run-Times for Neural Networks.
Advances in Multidisciplinary & Scientific Research Journal. Vol. 3. No.2, Pp 33-44.

1. INTRODUCTION

After many years of existence of Artificial Neural Network, the best way to implement it has remained one of issues
the proponents are yet to come to agreement. From very simple to complex models, studies have shown that there
are no clear cut guidelines for selecting any particular model. Multilayer Perceptron’s (MLPs) are Neural Networks
(NNs) with one input layer, one hidden layer with a nonlinear transfer function, and one output layer with a linear
transfer function Hornik et al (1989). They have the ability to approximate any function with a finite number of
discontinuities. Nonlinear functions are normally used to model any natural state of affair and the problem of selecting
their transfer function goes without any background theory. Specifically, issues relating to the development of MLP
NNs based models and the selection of an appropriate nonlinear transfer functions, affects modeling, performance
and consequently influence appreciation of results from such models. The Back-propagation method which is a
supervised training algorithm is by far the most commonly used method for training MLPs with nonlinear sigmoid
function principally in their hidden layer.

All sigmoid functions share a similar ‘S’ shape that is essentially linear in their center and nonlinear towards their
bounds asymptotically. More precisely, training a network means minimizing the error of a cost function such as the
sum of squares function and the computation of its derivative. One of the common complaints about back-
propagation is that it is slow. However, it has been used quite successfully on a wide range of problems more than
any other algorithm. A lot of work has been done in search of faster methods including those documented by Reed et
al (1998). In this paper, we have modified the hyperbolic tangent function by providing an alternative replacement of
the Euler function e, and also included an adaptive normalization routine. This produced a dramatic effect on the
performance, stability and accuracy of the result obtained.

34

Vol. 3 No.2, June , 2017

Further, test on other transfer functions namely – exponential linear unit (ELU) and hyperbolic tangent function
(HTAN) were conducted. Our observation showed that the modified HTAN function has made a strong statement in
solving the problem of vanishing gradient (VGP) and speed up learning time.

2. RELATED LITERATURE

2.1 The Vanishing Gradient Problem
The vanishing gradient problem (VGP) has been identified as a perennial issue in neural networks particularly with
activation functions that are sigmoidal. Hochreiter (1991) and Schmidhuber et al (1997), provided a detailed account
of this problem and proposed the Long-Short-Term-Memory (LSTM) network as a remedy to existing recurrent back-
propagation network such as the Back-Propagation-Through-Time (BPTT) network of Williams and Zipser (1995), the
Real-Time Recurrent Learning (RTRL) networks of Robinson and Fallside (1987) and the learning algorithm of
Pearlmutter (1989).

More formally, the VGP problem describes a phenomenon that occurs when the input activation goes out of range i.e.
blows-up due to exponential increase or decrease in the net weight product of the input-hidden chain. Thus, the
gradient vanishes and learning becomes difficult and unstable.
This problem can lead to poor accuracies and slow learning, particularly in networks that use random weight
perturbations. Here we propose “An adaptive activation with a modifiable exponential function” as a candidate
solution.

2.2 Exponential-like Activation Functions
Activation units employing exponential functions play a useful role in neural network learning systems. In this section
we briefly describe three popular activation learning units or functions used in neural networks and later compare
their performances on various metrics.

2.3 The Logistic Sigmoid (Soft-Step)
The Logistic Sigmoid or Soft-Step originally introduced by Verhulst (1845), is a popular activation function that has
been used in the past years by many researchers working on feed-forward back-propagation neural networks and is
very popular in hydrologic applications Yonaba et al (2010). Soft-Step is defined as:

)1.2(
1

1
xa

e
f

−
+

=

.and its gradient is expressed as:

())2.2(*1 aaa fff −=

This function has the desirable natural squashing property for diverse inputs - see Fig 2.1(a). However, due to the
VGP problem, this function may not perform well in real world applications. Another problem with this type of function
is its boundary-point limitation with a typical range of between 0 and 1. This may lead to slower response to network
prediction and reduced accuracy. The VGP occurs because x is squashed exactly at 1. This phenomenon is depicted
in Fig 2.1 (b).

2.4 Hyperbolic Tangent Function (HTAN)
To overcome the limitations of the Soft-Step, HTAN was developed. HTAN is an activation function with a better
range response than sigmoid leading to network speed-ups and more accurate predictions. The HTAN is defined as:

)3.2(1
1

2
*2

−
+

=
− xa

e
f

.and its gradient is expressed as:

)4.2(1 2

aa ff −=

35

Vol. 3 No.2, June , 2017

A typical response curve for an HTAN is shown in Fig 2.2(a). However, just like the soft-step sigmoidal function,
HTAN suffers from the VGP thus causing its activation response to stall at certain times and with reduced accuracy.
The VGP case is depicted in Fig 2.2 (b) for exploding values of x.

2.5 Exponential Linear Unit (ELU)
ELUs were introduced by Clevert et al (2015) in an attempt to solve the VGP. Specifically, an ELU is functionally
defined as:

≤−

>

=

)5.2(0)1(

,0,

xe

xx

f

x

a

α

.and its derivative (gradient) is computed as:

≤+

>

=

)6.2(0

,0,1
'

xf

x

f

a

a

α

The response of an ELU for values of x between -10 and +10 is as shown in Fig 2.3(a).
However, an ELU is still susceptible to VGP due to negative exploding weights (infinitesimal values), which may
result in instabilities during training leading to network stalling. This is attributed to derivatives that cancel out when
the values become -1. This situation is graphically depicted in Fig 2.3(b) for exploding values of x between -1000 and
+1000. Stalling effect situation is due to the computation of these non-numeric activations and will be described in
more detail in Section 5.

2.6 Machine or Algorithmic Representations of Exponential Function (
x

e)

Several attempts have been made to improve the computation of e. While some approaches emphasize speed at the
price of reduced accuracy, others prefer computation of large decimals of e with increased precision. In Schraudolph
(1999), a machine based approach was proposed using a modified IEEE-754 floating point operation for the

approximate computation of
x

e for neural activation functions. A revised version of this approach was proposed by

Cawley (2000). However, due to the VGP, making
x

e fast is not sufficient to improve the overall neural network

performance. Thus, several techniques and tricks have been recommended for eliminating or minimizing the
vanishing gradient effect. This include but is not limited to batch normalization Hagan et al (1994), Lawrence et al
(1997), using separate learning rates by Lecun et al (1998), the use of special gating networks by Hochreiter et al

(1997) and more recently the attempts to improve the computation of
x

e through Single-Instruction Multiple Data

(SIMD) architectures as in Malossi et al (2015). Thus, the computation of
x

e is still an active area of research.

3. MODIFIED HYPERBOLIC TANGENT FUNCTION WITH ADAPTIVE NORMALIZATION

The hyperbolic tangent function (HTAN) is one of the many implicit-conditioned activation functions with a natural
squashing operation for very large and small values beyond its range or continuous monotonicity for within range
values. However, this function does not scale well for difficult learning tasks with potential explosive inputs leading to
the VGP. The normalization trick described in Lecun et al (1998), is one attempt at avoiding this state but this may or
may not be entirely useful, particularly for varying experimental models or datasets – for instance see Nayak et al
(2014) and Nawi et al (2013). Thus, a better approach needs to be constructed from the basic principle. In this
section we present an approach that eliminates the VGP exploding weights in the basic Hyperbolic Tangent Function
which can lead to realistic results with reasonable accuracies.

3.1 Modified Hyperbolic Tangent Function
The Euler number (e for short) is a very vital mathematical function used widely in engineering and scientific
research, as well as in industry. This constant is useful because of some interesting features such as good
representation ability-replacing the structure of different kinds of functions or expressions, easy derivatives (when
used as an exponential function). The latter is of interest to this presentation.

36

Vol. 3 No.2, June , 2017

We approach the modification process from a different perspective focusing on a Real Number Formula (RNF)
introduced in Osegi and Anireh (2016) with an adaptive constraint validated by the random weight method in Nguyen
and Widrow (1990).

Using the RNF idea we define a modified HT`AN (MODHTAN) as:

+≤∨−≥∗=−

+
=

−≤∗
+

=−

+
=

≥∗
+

=−

+
=++

−

−

−

)7.2()(,1
1

)(
)(

,1
1

)(
)(

,1
1

,

3*23

1

2*22

1

1*21321

3

2

1

cutoffcutoffx

o

cutoffx

o

cutoffx

o

xxxxxx
RNF

k
f

xx
offsetx

x
x

RNF

k
f

xx
offsetx

x
x

RNF

k
ffff

.where,

The RNF used here is described as:

1,1,10

)8.2(

)(

7
===

≈

+−

−
=

mandnafor

e

xma

na
RNF

x

a

o

and 1x , 2x are the constrained activations and 1f , 2f the corresponding adaptive functions.

oRNF is cheaper to construct than
x

e and the derivative of HTAN can be used without any loss in precision. The

parameters 1offset and cutoffx represents the adaptive scaling (normalization) and threshold factors required for a

typical squashing operation. The introduction of 1offset provides immunity to the VGP defined by cutoffx . Exploding

values of weight are avoided as well so long as they fall within machine computable range. Typical values for cutoffx

fall between the range of 10 and 100, but these values are not restrictive. A view of this function for within range and
exploding values of x is shown in Figures 3.3(a) and 3.3(b) respectively.

3.2 Experiments
Training and Testing Environment: Experiments were carried out on a system using Intel iCore3 processor, clock
speed at 2.13GHz with 4GB Random Access Memory. The program was developed and run in Matlab ® 7.5
environment running on a Windows 7 Operating System.

Test Instances: Tests were performed on these three different activation functions namely – the Hyperbolic Tangent
Function, Exponential Linear Unit, and our modified Hyperbolic Tangent Function. We used the back-propagation
feed-forward neural network trained with the trainlm (Levenberg-Marquardt back propagation) function in Matlab and
adaptive normalized constraint described in the previous section. The key parameters of the Neural Network
employed are summarized in Table 3.1. We have used a modified Euler number expression described in the previous
section with negative exponents to derive an approximation to exponential function used in the sigmoidal and
Hyperbolic Tangent Functions. Our test instances are of two-fold:

First, we use a synthetic dataset of 50,000 points linearly scaled between -1 and +1. For each simulation run, the
time and corresponding error value is considered for each activation function. This process is carried out for 10
consecutive runs per activation function. Next, we use the approach in the first step using a benchmark dataset
obtained from Blake et al (1998).

37

Vol. 3 No.2, June , 2017

4. RESULTS AND DISCUSSION

4.1 Hypothetical Dataset (x^2 -2):
The run-times and error values of each function is as shown in Table 3.2, while Figures 3.4 and 3.5 shows the
combined run-time and error plots compared for each activation respectively. The average values of each activation
function are compared in Table 3.2. It can be seen that on the average HTAN performs best with least error while the
MODHTAN performs best in speed.

4.2 Benchmark Dataset (Heart Dataset):
The run-times and test classification accuracies of each function is as shown in Table 3.3, while Figures 3.6 and 3.7
shows the combined run-time and test classification plots compared for each activation respectively. The average
values of each activation function are compared in Table 3.3 and 3.4. From these tables MODHTAN performed best
in speed while ELU performs best in accuracy. It can also be seen from Fig3.7 that MODHTAN competes favorably
well with the ELU in terms of accuracy.

4.3 Stalling Effect
Due to VGP and exploding weights, long delays may be experienced prior to network training. Such undesirable
points are peculiar characteristic feature of exponential functions that employ some sort of iterative algorithm such as
the exponential function algorithm in Moler (2011).

5. CONCLUSION

From the foregoing, it is evident that many algorithms using the exponential function for computing its activations may
lead to network learning failure in practical real world applications. This phenomenon can be avoided in the modified
HTAN or activation functions using the RNF. Any previous use of RNF in network activation functions in any literature
is unknown to the authors. So far, this is a work in progress. We believe that these findings and effort towards
improving the performance of neural networks transfer functions is worth paying attention. It is also worthy to note,
that this research work did not receive any specific grant from funding agencies in the public, commercial, or any not-
for-profit sectors.

38

Vol. 3 No.2, June , 2017

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

fa

Fig 2.1 (a) Plot of Soft-Step for within-range values of x

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

fa

 Fig 2.1 (b) Plot of Soft-Step for exploding values of x

0 10 20 30 40 50 60 70 80 90 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

fa

Fig 2.2 (a) Plot of HTAN for within-range values of x

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

fa

Fig 2.2 (b) Plot of HTAN for exploding values of x. Values of x is

Between -10 and 1000

39

Vol. 3 No.2, June , 2017

0 2 4 6 8 10 12

0

10

20

30

40

50

60

70

80

90

Runs

R
u
n
-T

im
e
,(

s
)

HTAN Run-time

ELU Run-time

MOD-HTAN Run-time

Fig 3.4 Combined run-time plots for each activation for hypothetical dataset (x^2 -2)

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6

8

10

x

fa

Fig 2.3 (a) Plot of ELU for within-range values of x

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

-200

0

200

400

600

800

1000

x

fa

Fig 2.3 (b) Plot of ELU for exploding values of x

40

Vol. 3 No.2, June , 2017

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

Runs

M
S

E

HTAN MSE

ELU MSE

MOD-HTAN MSE

Fig 3.5 Combined Mean Squared Error (MSE) for each activation for hypothetical dataset (x^2 -2)

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

Runs

R
u

n
-T

im
e

,(
s

)

HTAN Run-time

ELU Run-time

MOD-HTAN Run-time

Fig 3.6 Combined run-time plots of each of the activation functions for the Heart dataset

41

Vol. 3 No.2, June , 2017

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

Runs

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y
 f

o
r

T
e

s
t

S
e

t,
(%

)

HTAN Accuracy

ELU Accuracy

MOD-HTAN Accuracy

Fig 3.7 Combined Classification Accuracies of each of the activations function for Heart dataset

Table 3.1 Used Neural Network Parameters.

Number of Hidden Neurons Number of Epochs Learning Parameter

 2 500 Gradient descent with momentum

42

Vol. 3 No.2, June , 2017

Table 3.2 Run-time and prediction errors using the different activation functions for the hypothetical dataset.

Run HTAN ELU MODHTAN

Run-time Error Run-time Error Run-time Error

1 42.3939 0.0117 4.9017 0.0783 5.5257 0.1721

2 61.1079 0.0117 4.5973 0.0781 12.7868 0.0402

3 38.6627 0.0384 6.5751 0.0147 16.2045 0.0511

4 51.6584 0.0117 5.6723 0.0783 10.4317 0.0457

5 54.4989 0.0116 12.9322 0.0145 9.4488 0.0494

6 43.9991 0.0117 19.7028 0.0146 4.7662 0.1554

7 37.6886 0.0116 10.9102 0.0147 12.9735 0.0395

8 50.6950 0.0115 60.8943 0.0220 8.9041 0.0404

9 65.1129 0.0116 5.6627 0.0787 8.3687 0.0595

10 56.9262 0.0116 8.6928 0.0145 5.0611 0.1961

Average 50.2744 0.0143 14.0541 0.0408 9.4471 0.0849

Table 3.3 Run-time using the different activation functions for the benchmark dataset.

s/n HTAN ELU MODHTAN

1 5.4931 6.0055 4.9312

2 5.0896 4.0761 4.3900

3 4.4483 4.0761 3.3172

4 6.0440 4.5144 4.9215

5 5.6504 4.5111 5.8229

6 4.9325 5.0495 6.2570

7 4.9014 4.4460 3.5589

8 4.0921 5.3067 3.2816

9 5.2682 4.3292 4.0175

10 4.6140 4.6856 5.2798

AVERAGE 5.0534 4.7000 4.5778

43

Vol. 3 No.2, June , 2017

Table 3.4 Classification test accuracies using the different activation functions for the benchmark dataset.

s/n HTAN ELU MODHTAN

1 75.92593 75.92593 70.37037

2 83.33333 75.92593 74.07407

3 79.62963 77.77778 74.07407

4 83.33333 88.88889 87.03704

5 61.11111 83.33333 75.92593

6 77.77778 83.33333 79.62963

7 83.33333 79.62963 81.48148

8 70.37037 88.88889 81.48148

9 75.92593 64.81481 81.48148

10 79.62963 83.33333 77.77778

AVERAGE 77.0370 80.1852 78.3333

44

Vol. 3 No.2, June , 2017

REFERENCES

1. Blake, C., Keogh, E., & Merz, C. J. (1998). {UCI} Repository of machine learning databases.
2. Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning by

exponential linear units (elus). arXiv preprint arXiv:1511.07289.
3. Cawley, G. C. (2000). On a fast, compact approximation of the exponential function. Neural computation,

12(9), 2009-2012.
4. Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE

transactions on Neural Networks, 5(6), 989-993.
5. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal

approximators. Neural networks, 2(5), 359-366.
6. Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma, Technische

Universität München, 91.
7. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
8. Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A convolutional neural-

network approach. IEEE transactions on neural networks, 8(1), 98-113.
9. LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Efficient BackProp. In Neural Networks: Tricks of

the Trade (pp. 9-50). Springer Berlin Heidelberg.
10. Malossi, A. C. I., Ineichen, Y., Bekas, C., & Curioni, A. (2015). Fast Exponential Computation on SIMD

Architectures. Proc. of HIPEAC-WAPCO, Amsterdam NL.
11. MATLAB Version, M. (2007). 7.5; MathWorks Inc. Natick, MA.
12. Moler, C. (2011). Experiments with MATLAB. MathWorks.
13. Nawi, N. M., Atomi, W. H., & Rehman, M. Z. (2013). The effect of data pre-processing on optimized training

of artificial neural networks. Procedia Technology, 11, 32-39.
14. Nguyen, D., & Widrow, B. (1990). Improving the learning speed of 2-layer neural networks by choosing initial

values of the adaptive weights. In Neural Networks, 1990, 1990 IJCNN International Joint Conference on
(pp. 21-26). IEEE.

15. Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles 18: 1–42. Retrieved
2016-06-30.

16. Nayak, S. C., Misra, B. B., & Behera, H. S. (2014). Impact of data normalization on stock index forecasting.
Int. J. Comput. Inf. Syst. Ind. Manage. Appl, 6, 257-269.

17. Osegi, E. N., & Anireh, V. I. (2016). A Real Number Formula for Approximating a Class of Irrational and
Transcendental Numbers (SURE-GP Inc, Nigeria and Rivers State University of Science and Technology,
Nigeria).

18. Pearlmutter, B. A. (1989). Learning state space trajectories in recurrent neural networks. Neural
Computation, 1(2), 263-269.

19. Reed, R. D., & Marks, R. J. (1998). Neural smithing: supervised learning in feedforward artificial neural
networks. MIT Press.

20. Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error propagation network. University of
Cambridge Department of Engineering.

21. Schraudolph, N. N. (1999). A fast, compact approximation of the exponential function. Neural Computation,
11(4), 853-862.

22. Verhulst, Pierre-François (1845). "Recherches mathématiques sur la loi d'accroissement de la population"
[Mathematical Researches into the Law of Population Growth Increase]

23. Williams, R. J., & Zipser, D. (1995). Gradient-based learning algorithms for recurrent networks and their
computational complexity. Back-propagation: Theory, architectures and applications, 433-486.

24. Yonaba, H., Anctil, F., & Fortin, V. (2010). Comparing sigmoid transfer functions for neural network multistep
ahead stream flow forecasting. Journal of Hydrologic Engineering, 15(4), 275-283.

