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ABSTRACT 

 
In this paper we present a modified version of the Hyperbolic Tangent Activation Function as a learning unit generator 
for neural networks. The function uses an integer calibration constant as an approximation to the Euler number, e, 
based on a quadratic Real Number Formula (RNF) algorithm and an adaptive normalization constraint on the input 
activations to avoid the vanishing gradient. We demonstrate the effectiveness of the proposed modification using a 
hypothetical and real world dataset and show that lower run-times can be achieved by learning algorithms using this 
function leading to improved speed-ups and learning accuracies during training.  
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1. INTRODUCTION 
 
After many years of existence of Artificial Neural Network, the best way to implement it has remained one of issues 
the proponents are yet to come to agreement. From very simple to complex models, studies have shown that there 
are no clear cut guidelines for selecting any particular model.  Multilayer Perceptron’s (MLPs) are Neural Networks 
(NNs) with one input layer, one hidden layer with a nonlinear transfer function, and one output layer with a linear 
transfer function Hornik et al (1989). They have the ability to approximate any function with a finite number of 
discontinuities. Nonlinear functions are normally used to model any natural state of affair and the problem of selecting 
their transfer function goes without any background theory. Specifically, issues relating to the development of MLP 
NNs based models and the selection of an appropriate nonlinear transfer functions, affects modeling, performance 
and consequently influence appreciation of results from such models. The Back-propagation method which is a 
supervised training algorithm is by far the most commonly used method for training MLPs with nonlinear sigmoid 
function principally in their hidden layer.  
 
All sigmoid functions share a similar ‘S’ shape that is essentially linear in their center and nonlinear towards their 
bounds asymptotically. More precisely, training a network means minimizing the error of a cost function such as the 
sum of squares function and the computation of its derivative. One of the common complaints about back-
propagation is that it is slow. However, it has been used quite successfully on a wide range of problems more than 
any other algorithm. A lot of work has been done in search of faster methods including those documented by Reed et 
al (1998). In this paper, we have modified the hyperbolic tangent function by providing an alternative replacement of 
the Euler function e, and also included an adaptive normalization routine. This produced a dramatic effect on the 
performance, stability and accuracy of the result obtained.  
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Further, test on other transfer functions namely – exponential linear unit (ELU) and hyperbolic tangent function 
(HTAN) were conducted. Our observation showed that the modified HTAN function has made a strong statement in 
solving the problem of vanishing gradient (VGP) and speed up learning time.  
 
2. RELATED LITERATURE 
 
2.1 The Vanishing Gradient Problem 
The vanishing gradient problem (VGP) has been identified as a perennial issue in neural networks particularly with 
activation functions that are sigmoidal. Hochreiter (1991) and Schmidhuber et al (1997), provided a detailed account 
of this problem and proposed the Long-Short-Term-Memory (LSTM) network as a remedy to existing recurrent back-
propagation network such as the Back-Propagation-Through-Time (BPTT) network of Williams and Zipser (1995), the 
Real-Time Recurrent Learning (RTRL) networks of Robinson and Fallside (1987) and the learning algorithm of 
Pearlmutter (1989). 
 
More formally, the VGP problem describes a phenomenon that occurs when the input activation goes out of range i.e. 
blows-up due to exponential increase or decrease in the net  weight product of the input-hidden chain. Thus, the 
gradient vanishes and learning becomes difficult and unstable. 
This problem can lead to poor accuracies and slow learning, particularly in networks that use random weight 
perturbations. Here we propose “An adaptive activation with a modifiable exponential function” as a candidate 
solution. 
 
2.2 Exponential-like Activation Functions 
Activation units employing exponential functions play a useful role in neural network learning systems. In this section 
we briefly describe three popular activation learning units or functions used in neural networks and later compare 
their performances on various metrics. 
 
2.3 The Logistic Sigmoid (Soft-Step) 
The Logistic Sigmoid or Soft-Step originally introduced by Verhulst (1845), is a popular activation function that has 
been used in the past years by many researchers working on feed-forward back-propagation neural networks and is 
very popular in hydrologic applications Yonaba et al (2010). Soft-Step is defined as: 
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This function has the desirable natural squashing property for diverse inputs - see Fig 2.1(a). However, due to the 
VGP problem, this function may not perform well in real world applications. Another problem with this type of function 
is its boundary-point limitation with a typical range of between 0 and 1. This may lead to slower response to network 
prediction and reduced accuracy. The VGP occurs because x is squashed exactly at 1. This phenomenon is depicted 
in Fig 2.1 (b). 
 
2.4 Hyperbolic Tangent Function (HTAN) 
To overcome the limitations of the Soft-Step, HTAN was developed. HTAN is an activation function with a better 
range response than sigmoid leading to network speed-ups and more accurate predictions. The HTAN is defined as: 
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A typical response curve for an HTAN is shown in Fig 2.2(a). However, just like the soft-step sigmoidal function, 
HTAN suffers from the VGP thus causing its activation response to stall at certain times and with reduced accuracy. 
The VGP case is depicted in Fig 2.2 (b) for exploding values of x.  
 
2.5 Exponential Linear Unit (ELU) 
ELUs were introduced by Clevert et al (2015) in an attempt to solve the VGP. Specifically, an ELU is functionally 
defined as: 
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The response of an ELU for values of x between -10 and +10 is as shown in Fig 2.3(a). 
However, an ELU is still susceptible to VGP due to negative exploding weights (infinitesimal values), which may 
result in instabilities during training leading to network stalling. This is attributed to derivatives that cancel out when 
the values become -1. This situation is graphically depicted in Fig 2.3(b) for exploding values of x between -1000 and 
+1000. Stalling effect situation is due to the computation of these non-numeric activations and will be described in 
more detail in Section 5. 

2.6 Machine or Algorithmic Representations of Exponential Function (
x

e ) 

Several attempts have been made to improve the computation of e. While some approaches emphasize speed at the 
price of reduced accuracy, others prefer computation of large decimals of e with increased precision. In Schraudolph 
(1999), a machine based approach was proposed using a modified IEEE-754 floating point operation for the 

approximate computation of
x

e for neural activation functions. A revised version of this approach was proposed by 

Cawley (2000). However, due to the VGP, making 
x

e  fast is not sufficient to improve the overall neural network 

performance. Thus, several techniques and tricks have been recommended for eliminating or minimizing the 
vanishing gradient effect. This include but is not limited to batch normalization Hagan et al (1994), Lawrence et al 
(1997), using separate learning rates by Lecun et al (1998), the use of special gating networks by Hochreiter et al 

(1997) and more recently the attempts to improve the computation of 
x

e through Single-Instruction Multiple Data 

(SIMD) architectures as in Malossi et al (2015). Thus, the computation of 
x

e is still an active area of research. 

 
 
3. MODIFIED HYPERBOLIC TANGENT FUNCTION WITH ADAPTIVE NORMALIZATION 
 
The hyperbolic tangent function (HTAN) is one of the many implicit-conditioned activation functions with a natural 
squashing operation for very large and small values beyond its range or continuous monotonicity for within range 
values. However, this function does not scale well for difficult learning tasks with potential explosive inputs leading to 
the VGP. The normalization trick described in Lecun et al (1998), is one attempt at avoiding this state but this may or 
may not be entirely useful, particularly for varying experimental models or datasets – for instance see Nayak et al 
(2014) and Nawi et al (2013). Thus, a better approach needs to be constructed from the basic principle. In this 
section we present an approach that eliminates the VGP exploding weights in the basic Hyperbolic Tangent Function 
which can lead to realistic results with reasonable accuracies. 
 
3.1 Modified Hyperbolic Tangent Function 
The Euler number (e for short) is a very vital mathematical function used widely in engineering and scientific 
research, as well as in industry. This constant is useful because of some interesting features such as good 
representation ability-replacing the structure of different kinds of functions or expressions, easy derivatives (when 
used as an exponential function). The latter is of interest to this presentation. 
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We approach the modification process from a different perspective focusing on a Real Number Formula (RNF) 
introduced in Osegi and Anireh (2016) with an adaptive constraint validated by the random weight method in Nguyen 
and Widrow (1990).  
 
Using the RNF idea we define a modified HT`AN (MODHTAN) as: 
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The RNF used here is described as: 
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and 1x , 2x  are the constrained activations and 1f , 2f  the corresponding adaptive functions. 

oRNF is cheaper to construct than 
x

e and the derivative of HTAN can be used without any loss in precision. The 

parameters 1offset  and cutoffx  represents the adaptive scaling (normalization) and threshold factors required for a 

typical squashing operation. The introduction of 1offset  provides immunity to the VGP defined by cutoffx . Exploding 

values of weight are avoided as well so long as they fall within machine computable range. Typical values for cutoffx  

fall between the range of 10 and 100, but these values are not restrictive. A view of this function for within range and 
exploding values of x is shown in Figures 3.3(a) and 3.3(b) respectively. 
 
3.2 Experiments 
Training and Testing Environment: Experiments were carried out on a system using Intel iCore3 processor, clock 
speed at 2.13GHz with 4GB Random Access Memory. The program was developed and run in Matlab ® 7.5 
environment running on a Windows 7 Operating System.   
 
Test Instances: Tests were performed on these three different activation functions namely – the Hyperbolic Tangent 
Function, Exponential Linear Unit, and our modified Hyperbolic Tangent Function. We used the back-propagation 
feed-forward neural network trained with the trainlm (Levenberg-Marquardt back propagation) function in Matlab and 
adaptive normalized constraint described in the previous section. The key parameters of the Neural Network 
employed are summarized in Table 3.1. We have used a modified Euler number expression described in the previous 
section with negative exponents to derive an approximation to exponential function used in the sigmoidal and 
Hyperbolic Tangent Functions. Our test instances are of two-fold:  
 
First, we use a synthetic dataset of 50,000 points linearly scaled between -1 and +1. For each simulation run, the 
time and corresponding error value is considered for each activation function. This process is carried out for 10 
consecutive runs per activation function. Next, we use the approach in the first step using a benchmark dataset 
obtained from Blake et al (1998). 
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4. RESULTS AND DISCUSSION 
 
4.1 Hypothetical Dataset (x^2 -2): 
The run-times and error values of each function is as shown in Table 3.2, while Figures 3.4 and 3.5 shows the 
combined run-time and error plots compared for each activation respectively. The average values of each activation 
function are compared in Table 3.2. It can be seen that on the average HTAN performs best with least error while the 
MODHTAN performs best in speed. 
 
4.2 Benchmark Dataset (Heart Dataset): 
The run-times and test classification accuracies of each function is as shown in Table 3.3, while Figures 3.6 and 3.7 
shows the combined run-time and test classification plots compared for each activation respectively. The average 
values of each activation function are compared in Table 3.3 and 3.4. From these tables MODHTAN performed best 
in speed while ELU performs best in accuracy. It can also be seen from Fig3.7 that MODHTAN competes favorably 
well with the ELU in terms of accuracy. 
 
4.3 Stalling Effect 
Due to VGP and exploding weights, long delays may be experienced prior to network training. Such undesirable 
points are peculiar characteristic feature of exponential functions that employ some sort of iterative algorithm such as 
the exponential function algorithm in Moler (2011).  
 
5. CONCLUSION 
 
From the foregoing, it is evident that many algorithms using the exponential function for computing its activations may 
lead to network learning failure in practical real world applications. This phenomenon can be avoided in the modified 
HTAN or activation functions using the RNF. Any previous use of RNF in network activation functions in any literature 
is unknown to the authors. So far, this is a work in progress. We believe that these findings and effort towards 
improving the performance of neural networks transfer functions is worth paying attention. It is also worthy to note, 
that this research work did not receive any specific grant from funding agencies in the public, commercial, or any not-
for-profit sectors. 
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Fig 2.1 (a) Plot of Soft-Step for within-range values of x 
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               Fig 2.1 (b) Plot of Soft-Step for exploding values of x 
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Fig 2.2 (a) Plot of HTAN for within-range values of x 
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Fig 2.2 (b) Plot of HTAN for exploding values of x. Values of x is  

Between -10 and 1000 
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Fig 3.4 Combined run-time plots for each activation for hypothetical dataset (x^2 -2) 
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Fig 2.3 (a) Plot of ELU for within-range values of x 
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Fig 2.3 (b) Plot of ELU for exploding values of x 
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Fig 3.5 Combined Mean Squared Error (MSE) for each activation for hypothetical dataset (x^2 -2) 
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Fig 3.6 Combined run-time plots of each of the activation functions for the Heart dataset 
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Fig 3.7 Combined Classification Accuracies of each of the activations function for Heart dataset 

 
 
 
Table 3.1 Used Neural Network Parameters.  

Number of Hidden Neurons Number of Epochs Learning Parameter 

                      2          500 Gradient descent with momentum 
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Table 3.2 Run-time and prediction errors using the different activation functions for the hypothetical dataset.  

Run HTAN ELU MODHTAN 

Run-time Error Run-time Error Run-time Error 

1 42.3939 0.0117 4.9017 0.0783 5.5257 0.1721 

2 61.1079 0.0117 4.5973 0.0781 12.7868 0.0402 

3 38.6627 0.0384 6.5751 0.0147 16.2045 0.0511 

4 51.6584 0.0117 5.6723 0.0783 10.4317 0.0457 

5 54.4989 0.0116 12.9322 0.0145 9.4488 0.0494 

6 43.9991 0.0117 19.7028 0.0146 4.7662 0.1554 

7 37.6886 0.0116 10.9102 0.0147 12.9735 0.0395 

8 50.6950 0.0115 60.8943 0.0220 8.9041 0.0404 

9 65.1129 0.0116 5.6627 0.0787 8.3687 0.0595 

10 56.9262 0.0116 8.6928 0.0145 5.0611 0.1961 

Average  50.2744 0.0143 14.0541 0.0408 9.4471 0.0849 

 
Table 3.3 Run-time using the different activation functions for the benchmark dataset. 
 

 
 
 
 
 
 
 
 
 
 

s/n HTAN ELU MODHTAN 

1 5.4931 6.0055 4.9312 

2 5.0896 4.0761 4.3900 

3 4.4483 4.0761 3.3172 

4 6.0440 4.5144 4.9215 

5 5.6504 4.5111 5.8229 

6 4.9325 5.0495 6.2570 

7 4.9014 4.4460 3.5589 

8 4.0921 5.3067 3.2816 

9 5.2682 4.3292 4.0175 

10 4.6140 4.6856 5.2798 

AVERAGE 5.0534 4.7000 4.5778 
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Table 3.4 Classification test accuracies using the different activation functions for the benchmark dataset. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

s/n HTAN ELU MODHTAN 

1 75.92593 75.92593 70.37037 

2 83.33333 75.92593 74.07407 

3 79.62963 77.77778 74.07407 

4 83.33333 88.88889 87.03704 

5 61.11111 83.33333 75.92593 

6 77.77778 83.33333 79.62963 

7 83.33333 79.62963 81.48148 

8 70.37037 88.88889 81.48148 

9 75.92593 64.81481 81.48148 

10 79.62963 83.33333 77.77778 

AVERAGE 77.0370 80.1852 78.3333 
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