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ABSTRACT 

 

The paper studies the Black-Scholes equation governing the price evolution of European call/put under the Black-Scholes model.  

Of particular interest is the criterion for the existence of unique similarity solution of the model equation. Our Numerical results 

show that stock volatility and risk-free interest rate have appreciable effects on the price of function. 
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1. INTRODUCTION 
 

Economic models can be described as a theoretical construction representing economic processes by a set of variables and a set 

of reasonable and /or qualitative relationships between them. Good Economic models attractively represent the reality.  Due to 

the enormous complexity of economic processes, economic models have served as a simplified framework designed to illustrate 

those complex processes. For instance, inflation and recession are general economic concepts. It is therefore required to get a 

model behaviour in order to measure the duo so that the economics can inform the public the cause and the real changes in price 

that are to be attributed to both economic crises. Economic models help to forecast economic activities so that the conclusions 

and assumptions will be logically related. It also helps to formulate economic policies, to modify future economic activities and 

to plan and allocate properly, in the case of centrally planned economics. It also assists a lot in finance to predict for trading. One 

of the helpful economic models is therefore the Black-Scholes model of option pricing published in 1973, which also involves 

some mathematical or qualitative analysis.  

 

 In mathematical finance and modelling, the Black-Scholes partial differential equation was designed to govern the price 

evolution of European call or European put under the Black-Scholes economic model [1]. The main financial insight behind the 

equation is that one can perfectly evade the option by buying and selling the underlying asset in just the right way and 

consequently eliminate risk. This evasion, in turns implies that there is only one right price for the option. as returned by the 

Black-Scholes formula. [2] solved some pricing problems and was able to get solution to the problems by using Black-Scholes 

formula. [3] considered an initial value problem for the heat equation on the real line  and also considered the solution to the heat 

equation in order to establish an integral solution to the Black-Scholes equation.  The author clearly showed the graphical 

solutions to the call option at various times.  In this paper, we consider the Black -Scholes partial differential equation. Following 

the approach of [4-10], we establish the criteria for the existence of similarity solution of the differential equation. 

 

2.  MATHEMATICAL EQUATION 

 

The Black-Scholes equation governing the price evolution is described by the equation 
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where  v(s, t)= price of the option (this is usually called c(s, t) for a call, and p(s, t) for a put), 

 s= stock price, t= time, r= risk-free interest rate,  

            =σ volatility of the stock,         FVVV ∈210 ,,  

 

2.1 Similarity transformation. 
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Remark: for similarity, ( ) tt == αα  

 

 

2.2 Existence of unique solution 

Theorem:  Let D denotes the region (in four-dimensional space, one dimension for η  and three dimension for 321 ,, yyy ). 
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be continuous and bounded. Then there is a constant 0>δ  such that there exists a unique continuous vector 

solution. 

 

Y ( )321 ,, yyy= which satisfies (4) and (5). 

 

Proof: 
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where α  is guessed such that ( ) .22 Vy =ξ  
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Satisfies the Lipschitz condition. Hence, problem (4) satisfying (5) which implies problem (8) satisfying (9), and for which 

( ) 22 Vy =ς , has a unique solution. 

 

 

3.  NUMERICAL RESULTS 
 

Problem (8) satisfying condition (9) is solved numerically by shooting method. The results are presented in the figures below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The price option profile f(�) against ��for various risk-free interest rate r  and  

For fixed values  h= 0.1, Vo = 0, V1= 2, � =0.3. 
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Figure 2: The price option profile f(�) against ��for various volatility �  and for 

fixed values  h= 0.1, Vo = 0, V1= 2, r=0.3. 
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3.   DISCUSSION RESULTS AND CONCLUSION 
 

In this paper, the criterion for a similarity solution was established. The numerical solution by shooting method show that risk 

free interest rate r and stock volatility have appreciable effects on the pricing option of the model. Figure 1 shows that as the risk 

free interest rate r  increases, the maximum price option lowers. The figure 2 also shows that an increase in stock volatility also 

reduces the maximum price options. 

 

In particular, the proof of the theorem shows that the Black-Scholes model when transformed has a  unique solution and it 

therefore means that the model represents a physical problem which will be useful to address future economic challenges. 
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