
Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

67

Software-Based Risk Level Analysis of Uses Permission

On Android Platform

1 2*Edward Udo & Olivia Nwose
1Department of Computer Science, University of Uyo, Uyo, Nigeria

2TETFund Centre of Excellence in Computational Intelligence Research
University of Uyo, Uyo, Nigeria
E-mail: 1edwardudo@uniuyo.edu.ng

Phone: +2348023339501

ABSTRACT

The Android platform's open nature grants significant flexibility to application developers but also
introduces privacy and security challenges. Users are frequently prompted to grant various permissions to
applications, often without a clear understanding of the associated risks. Current application permission
models may not adequately communicate the potential risks to users. Consequently, users may
inadvertently grant excessive permissions, exposing their personal data and devices to potential threats.
This work addresses the need for a comprehensive risk-level analysis of uses permissions within the
Android platform and communicates potential security and privacy concerns to users. This is done by
developing the RiLUP application, using Kotlin programming language and JetPack Compose, for the
analysis of the risk level of uses permission on Android platform. Android classes, functions, and methods
were used to achieve the set objectives. The method GET_META_DATA of the class get Installed
Applications nested in the Package Manager class was used to get the list of applications on a device.
Another nested class of the Package Manager class, get Package Info, and the method GET_PERMISSION
were used to retrieve the permissions from each application. A risk algorithm based on points allocation
system was developed to give a risk score taking cognizance of the number of sensitive permissions
required and the number granted. The risk score and risk level were displayed on the users screen, using
the colours red, blue and green to represent high-risk, medium-risk and safe applications respectively.
RiLUP was evaluated by analyzing 40 applications from Google Play Store with a risk score showing 27
applications as safe, , 9 as medium-risk and 4 as high-risk. A domain name “olivianwose.dev” was bought
from Name Cheap to host a site for easy sharing of the RiLUP APK file.

Keywords: Risk Level, Uses Permission, Android, Mobile Applications, Smartphones, Kotlin, JetPack

 Compose

Edward Udo & Olivia Nwose (2024); Software-Based Risk Level Analysis of Uses Permission on Android Platform. Journal of Advances in
Mathematical & Computational Science. Vol. 12, No. 1. Pp 67-86. Available online at www.isteams.net/mathematics-
computationaljournal. dx.doi.org/10.22624/AIMS/MATHS/V12N2P5

Journal of Advances in Mathematical & Computational Sciences
An International Pan-African Multidisciplinary Journal of the SMART Research Group

International Centre for IT & Development (ICITD) USA
© Creative Research Publishers

Available online at https://www.isteams.net/ mathematics-computationaljournal.info
CrossREF Member Listing - https://www.crossref.org/06members/50go-live.html

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

68

1. INTRODUCTION

The openness of the Android system and the popularity of Android mobile devices have increased the
number of applications (apps) developed in the last ten years. This leads to increase in personal data
leakage (Guaman et al., 2021). These mobile devices have increasingly tangled with almost all aspect
of human lives since they provide functionalities that help them to carry out their day-to-day activities
(Yilmaz and Davis, 2023). These provided functionalities invariably encourage the increase in the
number of users of Android platforms in recent years (Wang et al., 20213). As at April, 2024, Google
play, the largest Android application store, has more than 2.3 million android applications (AppBrain,
2024). The increase in the number of users and Android apps has attracted the attention of malware
developers. When these mobile devices are been used, personal data such as location, photographs,
contacts etc, are being transferred from one mobile device to another, which increases the risk of
personal information leakages (Kim et al., 2023) and mobile attacks (Ashawa and Morris, 2021).

Android, the most widely used mobile operating system with the highest number of users worldwide
(Ashawa and Morris, 2021), is an open development platform. Open, not in the sense that everyone
can contribute while a version is being developed, but in the sense that Android becomes open when
its final source code is made available to the general public. This implies that after it has been made
open, anyone can modify the code. Thus, Android’s open and adaptable platform is more vulnerable
to cyber attacks. The core building blocks, or fundamental Android components, are activities, views,
intents, services, content providers, fragments, and AndroidManifest.xml (Wu and Liu, 2019).

An Android app is a software programme created to operate on an Android device or emulator.
Developers may download the Android software development kit (SDK) from the Android website. SDK
includes tools, sample code, and relevant documents for creating Android apps. Android Package or
APK (also known as Android Application Package or Android Package Kit), is a file format used by
Android to share and install applications. As a result, an APK has every component an application
requires to successfully install on an Android device. Information about applications (also called
application code), user interfaces (UIs), classes, resources, services, metadata, layout-related
information and the manifest file are all compressed in the APK file, which is a zip file.

The security system for Android was created with various layers to provide flexibility, particularly for
developers to create safe applications, and adequate protection for all platform users. Android offers
some security features, such as the application sandbox and permission model, to safeguard users.
Each application runs in an isolated sandbox (Alshehri, 2019), which is a managed and constrained
environment to run and execute code. With the aid of this environment, developers may isolate and
safeguard system resources from malware and other forms of online danger. Android makes use of
security framework that allows apps to make a request for permissions to access sensitive end-users
data (contacts, messages, call logs and other device’s features like camera, Wi-Fi, location etc) (Xiao
et al., 2020). The permission-based approach used by Android is intended to prevent the spread of
malware while allowing end-users to grant permission to any app that wants to use their sensitive data.
Granting these permissions rely on the users’ ability to understand the application’s functionality.
However, in most cases, users are unaware that some applications may give extra permissions to
unrelated parties (Alenezi and Almomani, 2017).

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

69

The granted permissions are installed on the users’ mobile devices and can run on the mobile device’s
background collecting and transmitting data between applications which have the same permissions
privileges and fall under the same permission groups, without the users’ knowledge (Yilmaz and Davis,
2023). Developers of mobile platforms have implemented permissions models to evade these
background processes, but apps designers, developers, providers and other third parties are not
adhering to the general data protection policies, thus can access sensitive data on mobile platforms
without the consent of the end-users ((Yilmaz and Davis, 2023). The security of Android is dependent
on the effectiveness of the permission-based mechanism it uses (Xiao et al., 2020). With applications
built for modern versions of Android, one need not grant any permission upon installing an application.
Instead, an application will ask for permissions as it needs them (Stegner, 2023). According to
Developer (2023), in the current Android version 13, the system permissions are split into three
protection levels which are specified in the manifest file:

• Normal Permission: This permission allows access to information and activities outside the
sandbox of an application, but poses a very minimal threat to user privacy or the functionality
of other apps. It does not immediately threaten user's privacy. Normal permissions are
automatically granted by the system. Example, INTERNET, SET_ALARM, SET_WALLPAPER,
and WAKE_LOCK.

• Signature Permission: The device will automatically authorize signature permission if the
application requesting it is signed with the same certificate as the application that declared
the permission. Example WRITE_SETTINGS, WRITE_VOICEMAIL

• Runtime Permission: This permission is usually referred to as dangerous permission
because it offers applications more access to restricted data or permits it to carry out
prohibited actions that have a greater impact on the system and other applications. Example
READ_CONTACTS, READ_SMS, RECEIVE_SMS, ACCESS_FINE_LOCATION, and
ACCESS_COARSE_LOCATION

For a long time now, Android has been a major target of malicious apps because of its vulnerable
permission mechanism (Huang et al., 2015; Zhang et al., 2016). There are enormous risks with regard
to these permissions because up to 97% of malicious mobile malware targets Android platforms
(Olukoya, 2019). The Android permission model does not hinder privilege abuse or information
leakage. In other words, the permission model is not well designed to provide sufficient means of
control over an application’s activities and specify what private information or resources are accessible
to the application. Thus, many attacks could possibly occur by exploiting critical permissions, such as
privilege escalation sabotages (Alshehri, 2019). Google added the granting of risky permissions at
runtime and displayed the different permission categories in Android 6.0 and later published versions.
Google does not, however, provide thorough explanations of how they determined whether certain
permissions were safe or risky.

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

70

The list of permission groups, the related permissions and their permission levels are shown in Table
1.

Table 1: Permission Groups, Related Permissions and their Levels (Source: Alazab et al., 2020)

Permission Groups Related Permissions Permission Level
Alarm Set_Alarm, Set_Time_Zone Normal permission

Microphone Record_Audio Dangerous Permission
Bluetooth Bluetooth, Bluetooth_Admin Normal permission
Calendar Read_Calendar, Write_Calendar Dangerous Permission
Camera Camera Dangerous Permission
Contacts Get_Accounts,Read_Contacts,

Write_Contacts
Dangerous Permission

Location Access_Coarse_Location,
Access_Fine_Location

Dangerous Permission

Network Access_Network_State, Access_
Notification_Policy, Access_Wi-Fi_State,
Change_Wi-Fi_Multicast_State, Change_Wi-
Fi_State

Normal Permission

Phone Read_Phone_State, Read_Phone_Numbers,
Call_Phone, Answer_Phone_Calls,
Read_Call_Log, Write_Call_Log,
Add_Voicemail, Process_Outgoing_Calls

Dangerous Permission
Sensors Body_Sensors Dangerous permission

SMS Receive_SMS, Read_SMS,
Receive_Wap_Push, and Receive_MMS

Dangerous permission

Storage Write_External_Storage,
Read_External_Storage

Dangerous permission

This work therefore seeks to carry out a thorough, organized examination and analysis of the
permissions system for the Android platform by developing a dedicated application called RiLUP (Risk
Level Analysis of Uses Permissions) to analyze the already installed apps on the Android devices for
risk related to the permissions they request, provide risk level and appropriate score based on
permissions requested by each installed apps.

2. LITERATURE REVIEW

Yilmaz and Davis (2023) looked at permissions that are inbuilt in the Android mobile devices and
showed how they can expose sensitive user information; identify the behavior of the user and how
these information are shared among other applications. They did this by statistically analyzing the
permissions of 10 first party Android applications and investigated their actual purpose and privacy
risk. The permissions were categorized into 5 asset groups with risk levels of low to high which were
used to form a risk model. Xiao et al., (2020) proposed minimum permission for Android (MPDroid),
which combined static analysis and collaborative filtering approaches to identify the minimum
permissions for an Android app based on the permissions requested by the app and API-used code

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

71

permission. Given any app, MPDroid uses first the collaborative filtering approach to see the
permissions granted for by the app, then uses the static analysis approach to identify the set of
permissions that app actually needs. These approaches utilized Latent Dirichlet Allocation (LDA) to
categorize applications into different topics based on their descriptions and API usage. MPDroid
employed apktool to extract APK files, read permissions from Android Manifest.xml, and utilized
Androguard to statistically analyz the permissions of the applications' code. MPDroid finally evaluated
the over-privileged risk by looking at the extra permissions granted by the app. They conducted
experiments on 16,343 well-known apps (benign and malicious) gotten from Google Play Store. The
results showed that MPDroid performed significantly well.

Alazab et al., (2020) proposed a system for recognizing modified applications by analyzing the
frequency distributions of API calls and permissions between two applications. The system employed
an automated process using scoring and grouping techniques to identify crucial API calls in Android
malware. The mobile malware analysis comprised three phases: pre-processing, extraction and a
grouping phase that highlighted nuances in malicious API call usage. API calls were categorized into
groups like ambiguous, dangerous, and disruptive, focusing on those prevalent in malicious apps and
deeming those in benign apps irrelevant. To ensure consistent classifier weights, term frequency
normalization was implemented. Classifiers performance was evaluated using standard metrics like
accuracy, precision, recall, and F-measure. Five machine learning techniques were applied through
10-fold cross-validation, including random forest, J48, random tree, k-nearest neighbors, and naive
Bayes. The results showed the proposed strategy successfully identified mobile malware, achieving an
F-measure of 94.3%.

Alshehri et al., (2019) proposed Permission Usage and Risk Estimation for Android (PUREDroid), which
assessed the security risk posed by the permissions of Android applications and the amount of harm
caused by approving unnecessary permission requests. AndroZoo, an existing malware dataset for
Android, served as the basis for the evaluation of PUREDroid. Using apktool, each Android application
package (APK) was assessed, and permissions within the application were extracted. After reviewing
the permissions, the risk function assigned a score to each of the permission depending on how
frequently it was requested by both safe and malicious applications. One of three regions—a low-risk
region, a moderate-risk region, or a high-risk region was assigned to the risk score.

Dini et al., (2018) introduced the Multi-Criteria Application Evaluator of Trust for Android (MAETROID),
a framework designed to calculate the credibility of Android applications before installation. MAETROID
deployed the Analytic Hierarchy Process (AHP) to merge criteria including metadata, requested
permissions, and statistical assessments. The established criteria were global threat score based on
declared rights, marketplace, developer reputation, user rating and number of downloads. The global
threat score was derived from parsing the application's manifest file, considered declared
permissions, resource access, and potential operations. After calculating criteria values, AHP was
implemented. MAETROID's effectiveness was tested on a dataset of 9,804 Google Play applications
and 1,242 known malware programs from the Genome database. Notably, 77.37% of Google Play
applications posed no security threats, while 22% exhibited concerns, often due to low download
numbers; genome applications did not receive a trusted rating.

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

72

Shen et al., (2018) proposed a framework comprising malicious application detection and permission
recommendations for Android. The malicious application detection component evaluated installation
risks by using a Random Forest-based classifier trained on permissions and intent filters extracted
from AndroidManifest.xml. Androgurad, an open-source tool, facilitated static analysis, and Python
Beautiful Soup library was used to extract intent-filter features like permissions and broadcast
receivers. Feature vectors, derived from extracted features, were utilized to categorize applications
and calculate permission risk scores. Risk scores were computed using a dataset of 6,400 benign
applications. In an experiment with 10,979 good applications and 3,205 bad applications, the
proposed approach demonstrated a true-positive rate (TPR) of 86.8% and a false-positive rate (FPR)
of 0.99%.

Previous research and resources were based on certain versions of the Android operating system,
which makes them almost obsolescence when new Android versions are released. Google often
upgrades the Android operating system, and these modifications directly affect the application
development landscape. As a result, the tools utilized in previous studies became outdated due to
their inability to adjust to the constantly changing landscape of Android's development. Further
emphasizing the necessity for a more approachable and straightforward solution in this area is the
fact that none of the previous initiatives produced a freely accessible tool that is easy to use for the
convenience of regular users.

3. SYSTEM DESIGN

3.1 System Architecture

The architecture of the system is depicted in Figure 1.

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

73

Figure 1: System Architecture

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

74

The developer created the website files, which aided in file sharing and the RiLUP files created on
Android studio, used to develop the RiLUP application. These files were uploaded to the server. The
website, which is powered by Gokapi, holds the RiLUP APK file which was uploaded to the website for
easy access by the users. The server receives requests from the user and responds by sending the
requested website files. The server is protected by Cloudflare so that when the DNS lookup for the
website’s URL, the server will resolve it to CloudflareAnycast IPs open external link instead of the server
original name. The user’s device runs Android operating system and contains several apps installed
on it. The device accesses the website files and downloads the RiLUP application from the server. All
installed apps are retrieved and their Android manifest.xml files searched to extract all permissions.
Minifest.xml files contain information about each app and the permission it requests. The permissions
extracted from each of the manifest.xml file are stored in a variable used by the risk algorithm, during
the risk analysis process, to classify the risk level of each app as Low, Medium or High. The result of
the risk analysis is displayed on the user’s device in a way an average android user will understand.

3.2 Risk Algorithm

The risk algorithm used during the risk analysis process is depicted as follows:
Step 1: Check the Permissions Requested by an Application
Step 2: Identify all the Sensitive Permissions (S.P)
Step 3: Store all the S.P in the “sensitivePermissionNames” Variable
Step 4: Count the Total Number of S.P and Record as TSP
Step 5: Count all the S.P Granted by an Application and Record as TGSP
Step 6: Total S.P in RiLUP Application = TS (which is 19)
Step 7: Assign a Score of 2 to S.Ps that are Granted
Step 8: Assign a Score of 1 to S.Ps that are NOT Granted
Step 9: Calculate the Total Attainable Point (TAP) = TS * 3
Step 10: Calculate the Risk Score (R.S) = [(TGSP * 2) + TSP/ (TAP)]*100
Step 11: Classify the Risk: (Low: 0 – 25; Medium: 26 – 50; High: 51 – 100)

The 19 permissions declared as sensitive by the RiLUP application are

• android.Manifest.permission.CAMERA: This permission gives an application access to the
device camera, and a photo or video can be taken without the user's consent.

• android.Manifest.permission.RECORD_AUDIO: This permission gives an application access to
the device microphone and can record audio without the user's consent.

• android.Manifest.permission.READ_SMS: This permission is declared sensitive because it
gives an application access to read through the messages in the Android device without the
user’s approval.

• android.Manifest.permission.WRITE_EXTERNAL_STORAGE: This permission gives an
application the ability to write directly to external storage.

• android.Manifest.permission.READ_EXTERNAL_STORAGE: If a user grants this permission to
an application, it has access to read the storage and deletes all its content.

• android.Manifest.permission.READ_PHONE_STATE: READ_PHONE_STATE is one of the
Android permissions categorized as dangerous. This is because it “allows read-only access to
phone's state, including the phone number of the device, current cellular network information,
the status of any ongoing calls, and a list of any Phone Accounts registered on the device

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

75

• android.Manifest.permission.READ_CALL_LOG: This permission allows applications to save
the device’s call log data, and malicious applications may share call log data without the user’s
knowledge.

• android.Manifest.permission.WRITE_CALL_LOG: Allows the application to modify the phone's
call log, including data about incoming and outgoing calls. Malicious applications may use this
to erase or modify the device call log.

• android.Manifest.permission.SEND_SMS: This permission allows an application to send
messages.

• android.Manifest.permission.RECEIVE_SMS: It allows the application to listen to all the SMSs
that are received on the user's phone while he/she is using the application.

• android.Manifest.permission.CALL_PHONE: This permission allows an application to make a
phone call without the user having to confirm it through the Dialer user interface.

• android.Manifest.permission.ACCESS_FINE_LOCATION: Allows the API to determine as precise
a location as possible from the available location providers, including the Global Positioning
System (GPS) as well as WiFi and mobile cell data.

• android.Manifest.permission.ACCESS_COARSE_LOCATION:
• android.Manifest.permission.READ_CONTACTS: Applications with this permission are able to

save contact information, and malicious applications may do so without the user’s awareness.
• android.Manifest.permission.WRITE_CONTACTS: This permission enables the application to

change the information about contacts that is saved on the phone, including how often the
user has called, emailed, or spoken to them in other ways. Using this permission, applications
can remove contact information.

• android.Manifest.permission.READ_CALENDAR: This permission allows the application to read
every calendar entry on the phone, including friends’ and coworkers’ activities. As a result, the
application could be able to share or save calendar information regardless of its sensitivity or
confidentiality.

• android.Manifest.permission.WRITE_CALENDAR: This permission allows the application to
add, remove, amend, and edit events on the device, including friends' and coworkers' events.
As a result, the application might be able to alter events without the owner's awareness or
send messages that appear to be from the owner of the calendar.

• android.Manifest.permission.QUERY_ALL_PACKAGES: This permission gives application
visibility into the inventory of installed applications on a given device

• android.Manifest.permission.MANAGE_EXTERNAL_STORAGE: An application can access all
external storage in scoped storage with the MANAGE_EXTERNAL_STORAGE permission,
intended for use by a select few applications that must manage files on the users' behalf

3.3 UML Class Diagram
The class diagram models the classes in the RiLUP code, their attributes/methods, and the
relationship between them. The class diagram is represented in Figure 2.

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

76

Figure 2: UML Class Diagram

Activity class is the parent class to HomeScreen, PermissionScreen, and ApplistScreen classes. The
MainActivity class has the methods setContent() and setNextReminder(), which define the design of
the interface and respectively trigger the notification immediately one is sent. The receiver class is a
system class that declares a broadcast receiver that enables the application to receive intents even
when other components of the application are not running. The method, listenstoEvents(),carries out
the intent of the broadcast receiver by listening to when an event occurs. It is a parent class to the
NotificationAlarmReceiver class. The method, openApplist () in the HomeScreen class opens the next
screen in the RiLUPapplication.The method getInstalledApp() in the ApplistScreen retrieves the
applications installed on the device while the method getAppInfo() returns details about each
application. The method getRiskInfo() in the PermissionScreen gets the permission requested by each
application and count the number of permissions that are sensitive.

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

77

4. IMPLEMENTATION

The RiLUP application was developed using the Kotlin programming language and the Jetpack
Compose UI framework. The development of some key components of RiLUPis illustrated in
subsections 4.1 to 4.3.

4.1 Application Manifest File

This file is created when a new project is created on the Android Studio SDK. It contains the metadata
(package name, activity names, main activity, Android version support, permissions, and other
configurations) of RiLUP. The category for the intent filter is named android.intent.category.LAUNCHER
to indicate that the application can be launched from the device's launcher icon. The RiLUP manifest
file is represented in Figure 3.

Figure 3: RiLUP Android Manifest File

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

78

• Package Manager
The packageManager.kt file contains all the code that works on applications. The packageManager
class was used to retrieve various kinds of information related to the application packages that were
installed on the device. This file contains the following components:

• getInstalledApps: This function, represented in Figure 4, works with the packageManagerclass
and the method getInstalledApplication, which returns a list of all application packages that are
installed on the Android device. The function removes system applications like contacts, phone
dialers, etc. by filtering the returned list and removing applications with the flag FLAG_SYSTEM,
which denotes that the application is installed in the device's system image. The function also
uses the filter method to remove the RiLUP application if it is installed on the device because it
requires the QUERY_ALL_PACKAGES permission, which allows the query of any application on
the device. The list is then sorted by the application name and called in the ApplistScreen to
display the installed applications.

Figure 4: getInstalledApps Function

• getPermissionsForApp: This function calls the packageManager class and use the

getPackageInfo method and the GET_PERMISSIONS flag, to return information about
permissions in the application. It stores these permissions in a variable with name permissions,
which is then mapped to get granted permissions using the PERMISSION_GRANTED method
and stored in the variable named “granted”. The getPermissionsForApp Function is represented
in Figure 5.

Figure 5: getPermissionsForApp Function

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

79

• getRiskInfoForApp: This function declares sensitive permissions and classifies the permission
retrieved using different variables; these variables are declared with the keywords “val”,
sensitivePermissionNames, permissions, grantedPermissions, totalSensitvePermissions,
grantedSensitivePermissions, and score, which hold the values of permission information
obtained from each application. The getRiskInfoForApp function is depicted in Figure 6.

Figure 6: getRiskInfoForApp

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

80

• Risk ALgorithm.kt File

This file contains the code for the risk algorithm that calculated the risk score and the range used to
map the risk score. The algorithm gives a risk score based on the number of sensitive permissions
required and the number of sensitive permissions granted. The function to calculate the Risk Score is
shown in Figure 7.

Figure 7: mapToRiskLevel and calculateSensitivityScore Function

4.4 Uploading RiLUP to Website
A domain name “olivianwose.dev” was bought from Name Cheap to host a site for easy sharing of the
RiLUP APK file. The code for the site is open-source code from the GitHub repository. The RiLUP APK
file was uploaded to the site, which creates a link that can be shared for the RiLUP to be downloaded.
This site is controlled by Gokapi, a lightweight server to share files, which expire after a set amount of
downloads or days. The server is protected by Cloudflare, which prevents unwanted access to the
server's IP address. Cloudflare links the domain name system (DNS) to the server any time the domain
name “olivianwose.dev” is searched on the internet.

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

81

4.5 Outputs
Some of the screen shots displayed while running the RiLUP app sis shown in Figures 8 – 11.

Figure 8: RiLUP Home Screen

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

82

 Fig. 9: RiLUPPermission Screen Fig. 10: RiLUP Installed Applications List Screen

Figure 11: RiLUP Notification PopUp

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

83

4.6 Evaluation and Results

RiLUP application was used to analyze the uses permissions of several Android applications and the
corresponding risk score and level based on the permissions requested were generated; this was used
to test and evaluate the developed application. Table 2 shows the list of 40 applications that were
analyzed by RiLUP app.

S/N Application Name TAP TP TGP TSP TGSP Risk Score Risk Level
1 Algorand Wallet 51 17 11 6 0 12 Low
2 AliExpress 51 38 21 8 0 16 Low
3 Audio Bible 51 15 14 3 3 18 Low
4 Authenticator 51 12 12 1 1 6 Low
5 Block Puzzle Jewel 51 20 18 5 5 29 Medium
6 Biugo 51 51 19 6 0 12 Medium
7 Block-Puzzle Jewel 51 29 17 4 0 8 Medium
8 Document Converter 51 10 10 3 3 18 Low
9 Google-Play 51 6 5 0 0 0 Low
10 Jigsaw Puzzles 51 10 9 1 0 2 Low
11 JulWallet 51 26 11 3 0 6 Low
12 Lite 51 70 43 13 11 69 High
13 Magic Tiles 51 8 7 2 2 12 Low
14 MetaMask 51 26 10 2 0 6 Low
15 Mi Doc Viewer 51 13 10 2 2 12 Low
16 Netflix 51 18 12 2 0 6 Low
17 Noizz 51 52 25 6 6 35 Medium
18 Phone Master 51 50 31 7 7 41 Medium
19 Pi 51 29 12 1 0 2 Low
20 Pi Browser 51 32 16 5 5 29 Medium
21 Roqqu 51 12 12 4 4 24 Low
22 Shazam 51 24 17 4 2 24 Low
23 Showmax 51 16 12 1 0 2 Low
24 Smart Puzzles 51 7 7 0 0 0 Low
25 Status-Story Saver 51 31 10 3 0 9 Low
26 Telegram 51 56 25 11 2 29 Medium
27 Tick 51 43 23 9 9 53 High
28 Tile Master 3D 51 14 11 2 0 6 Low
29 TimeJot 51 2 2 0 0 0 Low
30 Too Hot to Handle 51 15 12 0 0 0 Low
31 Truecaller 51 82 52 15 15 88 High
32 Trust Wallet 51 12 8 2 0 6 Low
33 VFly 51 52 25 6 6 35 Medium
34 VLC 51 19 14 2 1 12 Low

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

84

35 WPS Office 51 34 20 3 1 15 Low
36 Wallpaper Carousel 51 23 19 1 0 3 Low
37 Water Color Sort 51 11 9 1 0 3 Low
38 WhatsApp Business 51 69 44 7 3 39 Medium
39 Xender 51 164 31 10 10 59 High
40 X 51 50 26 8 1 18 Low

KEY: TAP - Total Attainable Points; TP - Total Permissions; TGP - Total Granted Permissions, TSP - Total Sensitive Permissions;
 TGSP - Total Granted Sensitive Permissions

The risk score is based on a point system where two points is assigned when sensitive permission is
declared and granted; one point is assigned when it is declared but not granted. So 3 (2 + 1) is the
total point for each sensitive permission. The Risk Score for each application is the percentage of the
points attained by the application compared to the total attainable points (TAP) from all sensitive
permissions (TS) available in the RiLUP framework. That is:

Risk Score = [(TGSP * 2) + TSP/ (TAP)]*100 (1)

Where
 TAP = TS * 3 = 17*3 = 51. (2)

 For example, the Risk Score for the first application in Table 2 is calculated thus:
[(0 * 2) + 6 / 51)] * 100= [6/51] * 100 = 0.1176 * 100 = 11.8 (Approximately 12)

5. CONCLUSION

The RiLUP application addresses the increasing importance of security and privacy in the digital era,
particularly with the widespread use of smartphones and Android applications. This work develops
software-based risk level analysis of uses permission on android platform which allows Android phone
users manage permissions granted to installed applications.

 The RiLUP application includes a robust risk rating system, providing users with an easily
understandable risk score for each application based on its permissions. This score helps users to
quickly assess potential risks quickly, making them aware of permissions they may have unknowingly
granted. The application encourages informed decisions on retaining, revoking, or uninstalling
applications. Designed for scalability, RiLUP is ready for future updates, including adjustments to the
risk assessment algorithm or the addition of features based on user feedback. In conclusion, RiLUP
represents a significant step towards a safer digital environment, acting as a vigilant guard to ensure
users retain control over their personal data in an era where data security is crucial.

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

85

REFERENCES

1. Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A., and Awajan, A. (2020). Intelligent Mobile
Malware Detection using Permission Requests and API calls. Future Generation Computer
Systems, 107, 509-521. Doi:10.1016/j.future.2020.02.002.

2. Alenezi, M. andAlmomani, I. (2017). Abusing Android Permissions: A security Perspective. In
Proceedings of 2017 IEEE Jordan Conference on Applied Electrical Engineering and
Computing Technologies (AEECT), DOI:10.1109/AEECT.2017.8257772

3. Alshehri, A., Marcinek, P., Alzahrani, A., Alshahrani, H., and Fu, H. (2019). PUREDroid:
Permission Usage and Risk Estimation for Android Applications. In proceedings of the 3rd
International Conference on Information Systems and Data Mining, Houston TX, USA, April 6 -
8, 2019, 179–184. Doi.org/10.1145/3325917.332594

4. AppBrain (2024). Android Statistics: Number of Android Aps on Google Play.
Http://www.appbrain.com/statistics/number-of-android-apps (visited, April 2024)

5. Ashawa, M. and Morris, S. (2021). Android Permission Classifier: A Deep Learning Algorithmic
Framework based on Protection and Threat Levels. Security and Privacy 4(11), e164, 1 – 26
.Doi:10.1002/spy2.164

6. Developer (2023). Permissions on Android.
https://developer.android.com/guide/topics/permissions/overview

7. Dini, G., Martinelli, F., Matteucci, I., Petrocchi, M., Saracino, A., and Sgandurra, D. (2018). Risk
Analysis of Android Applications: A User-centric Solution. Future Generation Computer
Systems, 80, 505-518. Doi:10.1016/j.future.2016.035.

8. Guaman, D., Del Alamo, J. and Caiza, J. (2021). GDPR Compliance Assessment for Cross-
Border Personal Data Transfers in Android Apps. IEEE Access, Volume 9, 15961 – 15982.
Doi: 10.1109/ACCESS.2021.3053130

9. Huang, K., Zhang, J., Tan, W., Feng, Z. (2015). An Empirical Analysis of Contemporary Android
Mobile Vulnerability Market. In Proceeding of 2015 IEEE International Conference on Mobile
Services, New York, USA, 182–189. DOI: 10.1109/MobServ.2015.34

10. Olukoya O., Mackenzie L., and Omoronyia I. (2019). Security-oriented View of App Behaviour
using Textual Descriptions and User-granted Permission Requests. Computers and Security,
Volume 89, https://doi.org/10.1016/j.cose.2019.101685

11. Shen, Y., Xu, M., Zheng, N., Xu, J., Xia, W., Wu, Y., Qiao, T., and Yang, T. (2018). Android
application classification and permission usage risk assessment. In: Romdhani, I., Shu, L.,
Takahiro, H., Zhou, Z., Gordon, T., Zeng, D. (eds) Collaborative Computing: Networking,
Applications and Worksharing. CollaborateCom 2017. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, vol 252.
Springer, Cham. https://doi.org/10.1007/978-3-030-00916-8_52

12. Stegner, B. (2023). How do Android App permissions work? What you need to Know.
13. https://www.makeuseof.com/tag/what-are-android-permissions-why-should-you-

care/(Visited April, 2024)
14. Wang, Y., Zheng, J., Sun, C. and Mukkamala, S. (2013). Quantitative Security Risk Assessment

of Android Permissions and Applications. In: Wang, L., Shafiq, B. (eds) Data and Applications
Security and Privacy XXVII. DBSec 2013. Lecture Notes in Computer Science, vol 7964.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39256-6_15

Journal, Advances in Mathematical & Computational Sciences
 Vol. 12 No. 2, 2024 Series

 www.isteams.net/mathematics-computationaljournal

86

15. Wu, S., and Liu, J. (2019). Overprivileged Permission Detection for Android Applications. In
Proceedings of IEEE International Conference on Communications (ICC), Shanghai, China, May
20 – 24, 2019. Doi:10.1109/icc.2019.8761572.

16. Xiao, J., Chen. S., He, Q., Feng, Z. and Xwe, X. (2020). An Android Application Risk Evaluation
Framework Based on Minimum Permission set Identification. Journal of Systems and Software,
163, 110533, 1 – 17

17. Yilmaz, S. and Davis,M. (2023). Hidden Permissions on Android: A Permission-Based Android
Mobile Privacy Risk Model. In Proceedings of the 22nd European Conference on Cyber warfare
and Security (ECOWS, 2023), 717 – 724. Doi:10.34190/eccws.22.1.1453

18. Zhang, Y., Yang, M., Gu, G. , Chen, H. (2016). Rethinking Permission Enforcement Mechanism
on Mobile Systems. IEEE Transactions on Information Forensics and Security 11 (10), 2227–
2240.

