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ABSTRACT 
 

De novo molecular generation is crucial for advancing drug discovery and chemical research. This 
accelerates the search for new drug candidates and deepens our understanding of molecular diversity. 
The development of deep learning has propelled and expedited the de novo molecular generation. 
Generative networks, particularly Variational Autoencoders (VAEs), can randomly produce new 
molecules and modify molecular structures to enhance specific chemical properties, which are 
essential for advancing drug discovery. Although VAEs offer numerous advantages, they are hindered 
by limitations that affect their capacity to optimize properties and decode syntactically valid molecules. 
To address these challenges, we present LAIgnd, a de novo drug molecule generation model that 
implements a custom β-CVAE architecture conditioned on protein sequences and SELFIES input. 
Extensive experiments have shown that LAIgnd generates a wide variety of valid, novel, and effective 
molecules for complex and simple diseases, demonstrating its robustness and generalization 
capabilities. Additionally, by employing molecular docking, toxicity, similarity, and synthetic 
accessibility experiments, we demonstrated the drug-likeness and effectiveness of the generated 
molecules. The ability of our model to generate novel and diverse compounds was illustrated by a case 
study focusing on Lung Cancer. A total of four hundred (400) molecules were generated by LAIgnd, 
with a high number of molecules exhibiting strong inhibitory activity against the Epidermal Growth 
Factor receptor, as indicated by binding affinities. LAIgnd provides new insights into future directions 
to enhance therapeutics for complex and simple diseases by generating high-quality multi-target 
molecules for drug discovery. 
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1. INTRODUCTION 
 

The field of molecular design and generation has undergone significant advancements in recent years, 
driven by the pressing need to efficiently explore vast chemical spaces and discover novel compounds 
with desired properties. (Meyers et al., 2021; Scannell & Bosley, 2016).  
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This pursuit is particularly crucial in drug discovery, in which innovative solutions are constantly sought 
to address complex challenges (Iwata et al., 2023). At the heart of this endeavor lies the concept of 
de novo molecular design, a sophisticated approach that leverages artificial intelligence to propose 
new chemical structures tailored to specific molecular profiles (Ang et al., 2023; Meyers et al., 2021). 
This method, also known as "generative chemistry,” has gained traction owing to the increasing 
prevalence of AI-powered generative models in the field (Ai et al., 2024; Richards & Groener, 2022; 
Xue et al., 2019). 
 
The sheer scale of the chemical space, encompassing all possible molecules, presents both a 
challenge and an opportunity (Ai et al., 2024; Cheng et al., 2021). Although traditional compound 
libraries, even those containing billions of molecules, represent only a fraction of this space, de novo 
design methods offer a more targeted and efficient approach to traversing this vast landscape 
(Richards & Groener, 2022; Meyers et al., 2021; Xue et al., 2019). By generating compounds in a 
directed manner, researchers aim to identify optimal chemical solutions while evaluating fewer 
molecules than traditional brute-force screening methods (Meyers et al., 2021). Recent developments 
in deep learning and reinforcement learning have further revolutionized the field of molecular 
generation.  
 
These approaches enable the creation of novel molecules with tailored properties, accelerating drug 
development processes and expanding our understanding of molecular diversity (Ai et al., 2024; Ang 
et al., 2023; Li et al., 2021; Xue et al., 2019).  The integration of various molecular representation 
techniques, such as SMILES, SELFIES (Meyers et al., 2021; Krenn et al., 2020; Gupta et al., 2018), 
and graph-based models, has enhanced the precision and robustness of these generative systems 
(Ang et al., 2023; Jin et al., 2018). Deep generative models such as conditional variational 
autoencoders (CVAEs) have demonstrated significant efficacy in the generation of molecules with 
specific properties. Nonetheless, these model architectures often encounter challenges in effectively 
segregating latent molecular representations, potentially resulting in posterior collapse, as observed 
in a standard VAE (Lee & Min, 2022; Richards & Groener, 2022; Higgins et al., 2017). 
 
We introduce LAIgnd, which implements a deep learning architecture that relies on a custom 
conditional variational autoencoder (β-CVAE) model to generate SELFIES conditioned on protein 
sequences. The β-CVAE model combines powerful encoding and decoding components to generate 
SELFIES representations conditioned on protein sequences. The unique design of the model makes it 
a valuable tool for researchers and practitioners in the fields of molecular generation and drug 
discovery. The model pipeline also implements rigorous molecular validity tests and checks to ensure 
that the generated molecules meet the clinical requirements.  
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Fig. 1(a) 

 

 
Fig. 1(b) 

 
Fig. 1.(A & B)  Differentiating between a standard VAE and a CVAE. The standard VAE (left) 

generates a new molecule similar to the input. The CVAE (right) generates a new molecule with 
the desired properties conditioned by the conditional vector input (Ang et al., 2023). 
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2. METHODOLOGY 
 
2.1 Dataset  
The dataset used to train the model was curated in-house. 
 
2.2 β-Conditional Variational Autoencoder (β-CVAE) Architecture 

The Conditional Variational Autoencoder (CVAE) model architecture utilized for sequence generation 
consists of two primary components: the encoder and the decoder network cells. The encoder 
processes tokenized input sequences for both SELFIES and protein sequences, transforming them 
into a continuous multi-dimensional vector through standard embedding layers. Long short-term 
memory cells are employed to capture contextual information, enabling the modeling of complex 
dependencies within the protein sequences. The output from these encoders is then fed into a 
combined encoder to generate the final latent representation. This representation is subsequently 
used to predict the mean and log variance of the latent distribution. 
 
The decoder generates a SELFIES output based on the sampled latent vector and the protein 
sequence. The final layer employs a dense layer with softmax activation to predict the probability 
distribution over the SELFIES vocabulary. The model is trained using a combination of Kullback-Leibler 
(KL) divergence loss and cross-entropy loss to compare the predicted and target SELFIES 
representations. We introduced a hyperparameter β to mitigate the posterior collapse problem during 
training. 
 
2.3. Inputs for Model Prediction  
To test the real-world applicability of our model for drug discovery and molecule generation, we 
selected a global disease of concern. For this target, the protein sequence was retrieved from the 
National Center for Biotechnology Information (NCBI), cross-referencing with the UniProt Protein 
Database. The sequence was then fed to the model for molecule generation.  
 
2.4. Post-Training Model Validations and Testing 
The generated SMILE sequences were validated using the RDKit Chemoinformatics library. For each 
generated molecule, RDKit determined the validity of the molecule, calculated its molecular weight, 
and generated its molecular formula. Additionally, in-house docking and the ADMETox pipeline were 
utilized to validate the accuracy and validity of the molecules generated by the model. 
 
2.4.1 Docking and Toxicity Test 
The crystal structure of the retrieved target protein sequence was obtained from the Protein Data Bank 
(PDB), and molecular docking was performed using a double docking mechanism involving an initial 
docking step to determine the best poses, accomplished using the DiffDock molecular docking 
program. The docking results obtained from the initial docking were then passed to the second docking 
suite (GNINA) to calculate the binding affinities of the poses. A GNINA minimized affinity score 
threshold of ≤ -5 and a DiffDock confidence threshold of > -1 were used as filtering criteria to select 
the best molecules with potential activity against the target protein. The resulting filtered molecules 
were then fed into the in-house AdmetAI ADMETox pipeline, and a synthetic toxicity check was 
performed for the generated molecules.  
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Fig. 2: LAIgnd Architecture Diagram 
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2.4.2 Tanimoto Similarity Test 
We further implemented a similarity score check using the Tanimoto similarity function in the RDKit 
Chemoinformatics library to compare the similarity of the generated molecules with existing 
molecules. The similarity pipeline involves two major chemical molecule databases, PubChem and 
ChEMBL, with the molecule similarity check limited to the top three similar molecules from these 
databases. A custom similarity score was also calculated for each molecule, and all molecules were 
ranked based on the custom, Tanimoto, and synthetic accessibility scores. These metrics, coupled 
with the synthetic accessibility score or value (SA_score), provided an overview of the synthetic 
pathway for molecule generation and ease of synthesis. 

 
2.4.3 Synthetic Accessibility Score (SA score) 
To judge the hardness or softness of the molecules generated for chemical synthesis, a synthetic 
accessibility score was calculated for each hit molecule selected from the docking pipeline. This metric 
score, provided by the RDKit Chemoinformatics library, determines the ease of synthesis of a molecule. 
The score ranged from one (1) for very easy to synthesize) to 10 (very difficult to synthesize). 
 
2.5 Report Generation 
An interactive HTML-enabled report detailing hit candidates and their respective results was generated 
as the final output of the discovery pipeline. 
 
3. RESULTS 
 
3.1 Application of LAIgnd Predictive Power on Real Disease Proteins 
The main goal of developing LAIgnd is to generate de novo valid drug molecules against undruggable 
disease targets for personalized drug development. To test the efficacy of this model, we tested it 
against the epidermal Growth Factor Receptor implicated in Lung Cancer. In total, (400) molecules 
were generated for this target. After passing through our rigorous testing and validation pipelines, 
three hundred and sixty-seven molecules showed moderate to high binding affinities for the target 
protein (sample shown in Table 1).  
 
The RDKit validity synthetic accessibility score (SA score) revealed that approximately sixty-five (65%) 
of the molecules had moderate difficulty while twenty-six (26%) percent and nine (9%) were hard and 
soft, respectively. This metric allows our system to provide a quick snapshot for scientists to 
immediately measure the ease of synthesis of the hit molecules.  A comprehensive report that provides 
a detailed overview of the top small-molecule candidates was generated as the final output of the 
pipeline.  
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Table 1: DiffDock-Gnina Docking Results of top 10 LAIgnd-generated small molecules 

 
For the Tanimoto similarity, two of the candidates received a high score of twenty-seven (27%). This 
was followed by two molecules with twenty-five (25%) percent similarity, and ten molecules with 
similarities ranging between twenty-four (24%) and nineteen (19%) percent respectively, showcasing  
the novelty of molecules generated by LAIgnd. Our pipeline also included a Pan-Assay Interference 
Compound (PAINS) score to screen molecules that may yield false-positive results during high-
throughput screening assays (Table 2). These compounds often interfere with many biological assays, 
regardless of the protein target, and are crucial for avoiding false leads in the drug discovery process. 
Ninety-four percent (94%) of our molecules had a negative score (false) for PAINS, further validating 
the targeted nature of the molecules generated by our system.  
 
Table 2: Synthetic ADMETox Screening results of the top 10 LAIgnd-generated small molecules 

 

hit_molecul
es 

diffdock_confide
nce 

gnina_minimized_aff
inity 

molecular_wei
ght 

SA_Sco
re 

SA_Score_la
bel 

1 -0.90 -6.57926 142.206 4.6162 Moderate 
2 -0.92 -5.61831 

 
143.146 4.9414 Moderate 

3 -0.79 -5.94425 304.283 5.9135 Moderate 
4 -0.71 -5.60442 265.341 5.9585 Moderate 

5 -0.20 -5.53803 270.293 6.3784 Difficult 
6 -0.95 -5.97381 189.179 6.2976 Difficult 
7 -0.62 -5.19615 145.122 6.2751 Difficult 
8 -0.91 -5.46924 242.275 6.0094 Moderate 
9 -0.87 -6.32216 295.428 6.8766 Difficult 

10 -0.52 -4.91387 171.284 3.8971 Easy 

Hit 

Molecule 

Epoxide 

Ring 

Present 

PAINS logP Lipinski QED AMES BBB 

Martins 

Bioavailability 

Ma 

Carcinogens 

Lagunin 

ClinTox 

1 False False -0.6464 4 0.3935 0.9871 0.5820 0.9600 0.4491 0.0800 

2 False False -0.5894 4 0.4519 0.9232 0.7280 0.9379 0.6513 0.0750 

3 False False 1.027 4 0.3104 0.8755 0.8615 0.9714 0.5052 0.2991 

4 False False 0.19269 4 0.3083 0.9700 0.5527 0.9656 0.7095 0.3690 

5 False False -

0.17635 

4 0.6976 0.9207 0.7202 0.9596 0.3959 0.2157 

6 False False -1.6498 4 0.3664 0.9990 0.3516 0.9548 0.9448 0.0572 

7 False False -2.8392 4 0.2940 0.9993 0.4901 0.9889 0.8193 0.1456 

8 False False 0.5693 4 0.6266 0.8235 0.9401 0.9656 0.2016 0.1530 

9 False False 2.90479 4 0.6400 0.9466 0.7137 0.8905 0.6194 0.4183 

10 False False 1.9305 4 0.7012 0.1797 0.9913 0.9461 0.1984 0.0632 
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4. DISCUSSION 
 
β-CVAE architecture for molecule generation. Our system allows sampling from different latent spaces 
with each prediction run, thus improving the degree of novelty of the generated molecules. 
Furthermore, owing to the limitations of SMILES, we also introduced the SELFIES representation of the 
molecule to enhance the accuracy of the generated molecules.  To evaluate the quality of the 
generated molecules, we implemented custom screening tests using industry-standard tools such as 
RDKit and structural similarity checks on large-scale chemical molecule databases, such as PubChem 
and ChEMBL. Our results give further credence to the novelty of molecules generated by our model by 
giving the highest similarity score of 27%. The evaluation of LAIgnd, a novel approach in molecular 
design for disease treatment, faces two primary obstacles. In the realm of machine learning, especially 
for tasks involving the generation of new molecular entities targeting multiple disease proteins, there 
is a notable absence of established benchmark datasets. This gap hinders the ability to objectively 
assess and compare the performance of LAIgnd against other models or established standards.  
 
Additionally, the molecules proposed by LAIgnd are, by design, novel entities. This novelty, while 
potentially groundbreaking, introduces significant hurdles in the validation process including but not 
limited to, synthesis requirements and resource intensiveness. Before any biological testing can occur, 
these new molecules must be synthesized in a laboratory setting. The synthesis process demands 
specialized knowledge, considerable time, and substantial financial investment. These factors 
collectively impede the swift and comprehensive validation of LAIgnd's efficacy in producing 
therapeutically promising molecules. The situation underscores a broader challenge in the field of AI-
driven drug discovery; balancing innovative potential with practical constraints in validation and 
implementation. 
 
By conducting docking and ADMETox screening, we established drug-likeness and inhibitory validation 
of the generated molecules against the input target protein sequence. However, our model has room 
for improvement. Overall, LAIgnd presents continuous efforts to innovate the healthcare industry 
through artificial intelligence. 
 
5. CONCLUSION 
 
In summary, we implemented a β-CVAE deep generative model to generate novel drug molecules. We 
introduced an end-to-end pipeline that enables efficient generation and validation of potential small 
molecules for drug applications. Our results showed that our model is capable of generating unique 
molecules with optimized drug-related properties. By conditioning on the protein sequence input, 
LAIgnd provides valuable insights into personalized medicine using artificial intelligence. As we 
continue to improve the model, we will implement more stringent molecular validation methods and 
training parameters, further enhancing its potential application in the pharmaceutical and healthcare 
industries. 
 
Image Redaction Statement 
Owing to potential commercial interests, Autogon Inc. reserves the right to redact images of molecules 
generated by LAIgnd from this research report. This redaction is intended to protect proprietary 
information while maintaining the integrity of research findings. 
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