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ABSTRACT 
The Internet’s popularity has proven to be an effective mode for data dissemination, and also advance 
the proliferation of adversaries whose exploits network for personal gain via unauthorized access that 
compromises a user device. Adversaries have achieved such feats via socially-engineered, subterfuge 
schemes – some of which deny users of network resources. These distributed denial of service (DDoS) 
attacks are carefully crafted to impact a large magnitude with the capability to wreak havoc at high 
levels of network infrastructures. This study posits a deep learning approach to distinguish between 
benign exchange of data and malicious attacks from data traffic. With benchmark ensemble such as 
XGBoost, Random Forest and Decision Tree – the results shows our proposed ensemble yields F1 of 
0.9945, and outperforms XGBoost, RF and DT (with F1 of 0.9925, 0.9881 and 0.9805 respectively); 
And with an Accuracy of 0.9984 to outperform XGBoost, RF and DT (with 0.9981, 0.9964 and 0.9815 
respectively). The proposed ensemble incorrectly classified only 283-instances with 13,418 correctly 
classified test instances with a 99.84% accuracy. Result shows our use of the deep learning memetic 
model effectively differentiate between genuine and malicious packets via anomaly-based detection. 
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1. INTRODUCTION 
 
Information has since been known to be both critical, imperative and crucial to aid effective decision 
making in businesses [1]. This is so because, it improves performance, and strategies implementation 
to guide better monetization policies and portfolios for such organization. Information has also become 
both an integral foundation and fundamental requirement cum basis for today's complex culture [2], 
[3]. The field of informatics is continually advanced with the constant evolution vis-à-vis the integration 
of the information and communication technology (ICT) tools. This ease of adoption cum integration 
can be attributed to its ubiquitous nature, low-cost, ease of use, mobility, portability and user-trust [4]–
[6] – all of which does continue to advance the popularity and adoption ease of ICTs. This growth has 
equally attracted intrusion activities from adversaries [7]–[9] whom for their personal gains, seek to 
exploit the device of unsuspecting users. They achieve these by exploring unsolicited adverts, phishing 
techniques and malware distribution to exploit user devices – as its rise today, has become and proven 
to be a great concern to both businesses. security experts, individuals and organizations [10]–[12].  
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Human capacity development is poised at promoting greater productivity. Even with digital revolution 
as experienced today, its impact (positively and negatively) on both human and machine connectivity 
via the adoption of ICT systems – has also evolved businesses over-time; And these evolutions, have 
also experienced both internal and external assaults from adversaries often referred to as hackers 
[13]–[15]. Such compromises of unsuspecting user targeted-devices with adversarial tools designed 
to evade security measures, obscure data privacy and weaken network infrastructure have become a 
great concern with negative impacts on the adoption of technology [16]–[18]. Examples of socially-
engineered intrusive actions include data stealing, tamper and corruption, service denial and outage, 
phishing, pharming, spamming, stack and buffer overflow, etc – to mention a few. Reports continue to 
advance that concerted efforts in this war against intrusion continues to usher in great procedures, 
tools and modes to fight and stay the course of this war as well as advance that while it is a consistent 
probe, studies have successfully proven that intrusion threats, breaches and attacks to networks 
infrastructures, user devices and businesses can never be over-emphasized  [19]–[21]. 
 
The rise in rate of these breaches are as broad in range of the innovative technology [22] – leading to 
denial of services attack, etc [23]. It is necessary to stop as close to the source and as fast, any DDoS 
breach. These breaches on networked resources are careful coordinated and targets user system via 
a number of compromised systems [24]–[26]. DDoS threatens network infrastructure since by design, 
they are crafted to target a large cluster of user devices; And in turn, wreaks havoc if compromised at 
various levels [27]–[29].  
 
The ease in propagation of these attacks, is become of great concern such that, even with available 
tool/method to act as measures to dissuade adversaries. New studies explore machine learning (ML) 
approaches as modes to effectively classify genuine from malicious packets that attempts intrusion 
[30]–[32]. These feats as achieved by an adversary, is accomplished via the vulnerability trace that 
attempts to compromise a user device [33]–[35] masquerading as genuine user. The spread of such 
breaches/attacks are losing monies for businesses as private files, and network infrastructure are 
often lost to such breaches. With evolved techs, adversaries often exploit malware as means to wreak 
havoc. It has become crucial and imperative to compile counter-intrusions via measures that remains 
resilient to cyberattacks. This has also become a primary focus for most businesses and organizations, 
to adopt intelligent model that can deter and dissuade adversaries [36]–[38]. 
 
1.1 Distributed Denial of Service (DDoS) Attacks 
DDoS are carefully crafted attack, socially-engineered threats, breaches and attacks initiated against 
network resource(s). it is often targeted as a subterfuge, stealth mode threat aimed to compromise a 
user device, and use same as entry (pivot cum pilot) point to access a network infrastructure [39]–
[41]. So that on access entry to a vulnerable compromised device – an adversary seizes up resources 
to include CPU time, memory, network bandwidth, memory  [2], [42], [43] – denying authorized users 
access as (s)he further exploits the network’s weakness. Many adversaries achieve this feat via the 
aid of code insertion mechanism [44]–[46], which seeks and eventually overwhelms a network with 
user requests. The well-coordinated and careful crafting of the DDoS – often ensures its success and 
the size of the botnet often corresponds to the severity of the attack [47]–[49].  
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Thus, such breach tries to exhaust targeted resources, deny authorized user access, and exploits a 
compromised network of its resources. DDoS can easily be fixed by manually disconnecting affected 
devices – if/when they are detected. Thus, firewalls and employed detection approaches must aim to 
stop as fast as it is detected, and as close to its source as possible as it can [50]–[52]. DDoS are 
basically grouped into: (a) an adversary by design, exploits cum floods a network with user requests to 
eventually overwhelm a server with requests so that once access is gained – s(he) exhaust/seize up 
CPU-time, power, bandwidth, etc and makes it difficult for all other genuine/authorized user to access 
these resources, and (b) an adversary can initiate a large volume of malicious data requests via s(he) 
usage of the protocol design attack that spoofs all user requests; And in turn, deny services to users 
[53]–[55]. The success of DDoS is attributed to its skills for evading detection as adversary can spoof 
their source IP-address to mask data origin – making it difficult to differentiate genuine data packets 
from malicious data packets [56]–[59].  
 
Thus, detection approaches must be able to spot these based on their locality of deployment as [60], 
[61] via the following techniques: 
a. A source device can explore security medium to aid identification of malicious data with its 

outgoing packet and filters it. Such detection is launched at the attack’s source and prevents other 
network users from generating a DDoS. This detection mode stops such an attack breach so fast 
and so close as possible to the attack source (a best practice) and minimizes havoc the attack 
ought to accomplish on the network packets cum traffic [62], [63]. 

b. A victim-end detection is when a compromised device can detect/distinguish incoming malicious 
data from genuine data via its misuse of intrusion, or anomaly intrusion detection scheme – such 
that the data packet is denied entry or granted degraded services as it reaches a victim device so 
as to dissuade it from bandwidth saturation [64], [65]. 

c. Core-end detection is when a router may attempt to identify a malicious data via traffic flow rate-
limit so as to balance between its detection accuracy and bandwidth consumption of a request 
(attack). Thus, it traces back such detection with ease as its aggregates all traffic flow via rate-limit 
since both attack and genuine packets arrive at the router at same time [66], [67]. 

 
1.2. Study Motivations 
Despite its widespread adoption – the inherent gaps and persistent challenges that often degrades 
the performance and efficacy of collaborative filtering heuristics in practical applications are as below 
[54], [68]–[71]. These include (but not limited to):  
a. The alarming growth rate of DDoS breaches, attacks and threats portends to compromise 

unsuspecting user devices and exploit resources. This rise has triggered loss of finance, caused 
reduced user-trust, and reduced care towards integration cum adoption of technology. DDoS can 
be resolved with targeted IDS schemes [41], [72]–[74], knowledge-driven heuristic models [75]–
[77], and statistical dynamic models [78]–[82]. All these have successfully been implemented 
on malicious data. Thus, to combat DDoS is a continuous task even when many such 
classification heuristics’ performances are degraded cum hindered by the adopted feature 
selection scheme that often yield model overfit and over-train. 

b. Finding the right-format dataset – is crucial to machine learning task. Access to high-quality 
datasets is needed in training and performance evaluation [83] – as there is limited data, which 
often yield significant false positives [84]. A crucial hurdle is challenge with imbalanced datasets 



                                                                                                                                                               
  
  
 
 
 
 

 
  
 
 

128 
 
 

Volume 10, No 2, 2024 Series 

 
       

       

with cases of DDoS attack lagging behind genuine ones. New studies must seek explore intricate 
sampling techniques, or harness the robust power of ensemble(s) tailored explicitly to mitigating 
the issues of imbalanced dataset [85], [86]. 

c. As DDoS prevents authorized clients from access to network resources; thereby consuming or 
causing the seizure of available resources as it overwhelms/overloads a network with requests, 
until countermeasures are explored. There is become the urgent need to identify its source, 
manage their existence as fast and as close to its origin. This will imply to effectively differentiate 
between legitimate and malicious acts via use of statistical heuristics. Many of such ensemble 
that explores hill-climbing approach – often gets trapped at the heuristic’s local maxima. 

d. To formulate an effective detection approach also yields a variety of drawbacks as malicious 
packets by design – seek to evade filter detection. These filters are by design also hampered by 
the character size limit, non-availability of dataset, feature selection and extraction in the quest 
for ground truth, heuristic construction, and training. These, can lead to both poor generalization 
and poor test dataset classification for the proposed heuristics. 

e. With increased use of multiple channels for transactions [87]–[89] – new models must integrate 
various channel data to enhance the overall accuracy [90]–[92] as traditional detection modes 
are limited in adapting then emergent attack patterns as well as keeping up with novel tactics. 

 
To overcome these, we propose cum adapt a modular memetic consisting of a cultural genetic 
algorithm fused neural network learning algorithm that seeks to effectively classify malware intrusion 
from genuine traffic flow data packets. 
 
2. MATERIAL AND METHOD 
 
Network resources are best viewed as a stream of data events, checked on the backdrop of predefined 
threat rules and patterns. Managers often formulate a general view for known attacks so that the 
system can easily improvise and identify related occurrence as attacks, based on either a signature 
and/or anomaly analysis, self-organized maps, and transition analysis. The rise in DDoS breaches 
today, continues to raise concerns, making its detection an urgent task for businesses. The loss in 
cost associated with DDoS has since become staggering, incurring losses in billions of dollars annually. 
Thus, businesses and users must remain committed to and vigilant towards continued improvements 
and detection systems. Despite these efforts, adversaries continue to invent new techniques to evade 
and circumvent security measures to avoid detection, making it a constant battle [93].  
 
Today also, machine learning models have been successfully trained to effectively recognize breaches 
patterns. They learn via features classification of the normal behavior in traffic flow, or a quick detect 
of the unusual activity as pattern indicative of a breach/threat profile. A variety of machine learning 
(ML) schemes successfully implemented includes: Logistic Regression [94]–[96], Deep Learning [97]–
[99], Bayesian model [100], Naive Bayes [101], Support Vector Machine [102], [103], K-Nearest 
Neighbors [104], Random Forest [26], [105], and other models [106], [107] that have been effectively 
used to detect credit-card fraud. Many of these, have drawbacks with their flexibility in feature 
selection, importance, and accuracy. Our ensemble should be able to reduce overfitting, to address 
imbalanced datasets, and yield a vigorous prediction accuracy [108]–[110]. 
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Emordi et al. [111] used a multi-level tree for packet statistics to monitor data traffic(s) on devices, 
and to detect as well as eliminate DDoS. They aggregated and rated each packet statistics to 
successfully detect ongoing breach via a disproportional difference between each data’s rate in/out a 
network – and set-up at locations that equips each device to either fails to monitor or detect bandwidth 
attacks. Haque et al. [112] Adversaries evade detection by randomizing source-IP. They investigated 
DDoS via NetBouncer, distinguishing the vulnerable from non-vulnerable users, and update the client 
list that allowed access to resources. As a user forwards a packet, the NetBouncer compares for 
legitimacy of the user. Once the user passes the test, s(he) is added to the legitimacy list and therein, 
granted access to network resources till such a window for legitimacy expires at expiration of the list 
and users are thus, re-validated.  
 
Machine learning (ML) schemes have been used to efficiently classify DDoS with ensembles that are 
tolerant to noise, ambiguities, and have imprecise data at its input – to yield low-cost, effective optimal 
solution. MLs explores traffic (historic) dataset to yield a model design that seeks to group new cases 
based on class features. Instances that do not conform to the trained heuristic are classified as an 
anomaly. Thus, Nguyen [113] Proactively classified network status into phases that seek to investigate 
packets based on selected features using the KNN model to classify packets of DDoS attack. Yuan et 
al [114] used decision trees to detect DDoS with 15-features selected to help it monitor data and flag 
data rates in/out using traffic flow pattern. It detects traffic anomalies via a matching scheme that 
identifies traffic similar to an attack, and trace to its origin based on similarity via DARPA 2000 dataset. 
  
Otorokpo et al [115] used a signature memetic ensemble to detect DDoS breach using 7-features to 
monitor data rate and packet traffic pattern. It uses a match method to identify traffic flow(s) into 
classes and trace them back to an attack’s origin via the similarity. Odiakaose et al. [116] investigated 
DDoS attacks using the Radial Basis Function to test data packets for anomalies as applied to an 
edge-routers on a victim networks. It uses 7-feats to train a RBF-network, and classified data into 
genuine and attack class(es) such that if heuristics detects an incoming traffic as attack, its source 
packets is forwarded to a filter and alarm routine for further measures of actions. Otherwise, if clear 
and free of attacks, they are forwarded to their respective destination(s) [117]–[119]. 
 
2.1. Data Gathering 
Dataset used was obtained from [web]: www.kaggle.com/datasets/DDoS/attacks.htm”. It consists of 
54,807 DDoS attacks recorded classifications. Input is transformed using the principal component 
analysis (PCA) [120]–[122]. A more detailed description can be seen in [123], [124]. 
 
2.2. Experimental Neural Network with Fused Genetic Algorithm Trained Learning Ensemble 
Studies have proven that reinforcement (hybrid) ensemble always outperforms single classifiers. Their 
fundamental issues include their challenges to resolve conflicts arising from: (a) data encoding and 
transcription from one heuristic to another, and (b) structural dependencies as imposed by the base 
heuristics used/adopted. These must be effectively/adequately resolved. Our proposed experimental 
hybrid deep learning ensemble is constructed with 3-blocks as adapted from [125] and [126] which 
is detailed thus: (a) deep learning, unsupervised modular Kohonen neural network, (b) the supervised 
cultural genetic algorithm, and (c) the knowledgebase – as in figure 3. 
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Figure 1. Modular Neural Network with Fused Genetic Algorithm Trained Learning Algorithm 

 
1. The Supervised Genetic Algorithm: Gas by design explores 4-operators/section namely initialize 

unit, fitness function and select unit, retrain/crossover unit, and mutation/diversity unit – so as to 
reach optimality. A fit gene yields a value close to the optimal. The Cultural GA (CGA) is a variant 
that uses 4-belief spaces to yield a solution. They include: (a) norm specifies the upper/lower range 
that bounds a gene, (b) domain specifies data about the task, (c) temporal specifies knowledge 
about the available problem space, and (d) spatial specifies the coverage topography of the task. 
In addition, it exploits an influence function to bridge gaps between its gene pool and these belief 
spaces – to ensure that modified genes do not exist outside the lower/upper bounds and they still 
conform to the belief space(s). Thus, its result pool does not violate the belief space(s) to reduce 
the amount of potential candidate that the CGA generates until it reaches optimum [127]–[129]. 

2. Unsupervised Modular Kohonen Neural Network (MNN) is a feed-forward, grid network – whose 
input layer accepts data, and forwards them as unbound to its hidden layer. This layer activates 
the transfer function to yield the desired computation by mapping its similarity patterns into 
relations. These pattern cum relations when/if noticed, is then employed to determine its training 
result. To create the deep learning impact of the MNN – we carefully modify its features through 
the 2-stages namely pre-trained, and fine-tuned processes as described in [130]. 

 
2.3. Training Phase 
Table 1 lists the generated top 22-rules during training with fitness values between 0.80-to-0.8065. 
With these top-rules yielding 80percent and above – they are good enough to be used to detect 
intrusion of the test-dataset. For example, rule 14 (in bold) states that any connection with any infinity 
hours, 0 minutes, infinity seconds – using any protocol from a source-port 1023, and headed for any 
destination port with source-IP 192.168.1.30, and destination-IP 192.168.0.-1 (as the last octet can 
range from 0 to 255) – will be regarded as intrusion. We thus, infer from other rules that 10-of-22 
rules with the destination port of -1 (infinity amount) yields an intrusion – since most destination rules 
search for traffic flow pattern and connections from any destination port -1. This increases its chances 
of detecting an intrusion on any port in the network as well as improves generality of rules. 
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Table 1. Fitness function for selected features with top-22 generated rules 

Time Protocol Source Port Destination Port Source IP Destination IP Attack Fitness 
-1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 PG 0.8063 
-1,0,23 -1 -1 -1 192.168.1.30 192.-1.0.20 PC 0.8063 
0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 PS 0.8063 
0,0,5 -1 -1 -1 192.168.1.30 192.-1.0.20 PS 0.8063 
-1,0,23 telnet -1 23 192.-1.1.30 192.168.0.20 PC 0.8063 
0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 ARS 0.8063 
-1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 ICMP 0.8063 
0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 NP 0.8063 
0,0,23 telnet -1 -1 192.168.1.30 192.168.0.20 PA 0.8063 
-1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 FA 0.8063 
0,0,5 -1 -1 -1 192.168.1.30 192.-1.0.20 FA 0.8063 
-1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 ARS 0.8063 
0,0,-1 -1 1023 1021 192.-1.1.30 -1.168.0.20 PODA 0.8031 
-1,0,-1 -1 1023 -1 192.168.1.30 192.168.0.-1 PODA 0.8031 
0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 PA 0.8031 
0,0,14 -1 -1 513 192.168.1.30 192.168.0.20 SR 0.8031 
0,0,14 -1 -1 513 -1.168.1.30 192.168.0.20 SH 0.8031 
0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 RA 0.8031 
-1,0,-1 -1 1023 -1 192.168.1.30 192.168.0.-1 DN 0.8031 
0,0,5 -1 -1 23 192.168.1.30 192.168.0.20 IPS 0.8031 
-1,0,-1 -1 1023 -1 192.168.1.30 192.168.-1.20 PODA 0.8031 
0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 ICMP 0.8031 

 
Table 1 lists training result for our deep learning modular memetic ensemble with labeled attacks: 
ICMP PING – Internet Control Protocol Packet Internet Groper, NP – Network Ping, PS – Port Scan, 
PAS – Packet Sniffer, PA – Protocol Analyzer, PG – Password Guess, PC – Password Cracking, SH – 
Session Hijack, SR – Session Replay, IPS – IP Spoofing, DN – Domain Name attack, RA – Reroute 
Attack, FA – Flood Attack, ARS – Address Resolution Spoof, PODA – Ping of Death, etc [131], [132].  
 
Our rule generator uses a population of 400 over 5000-evolutions, with 0.05 probability of a gene 
to be mutated. The network weights (i.e. w1 and w2) were recorded as 0.2 and 0.8 respectively. So 
– taking our first rule from the Table 1 as a case study, it is explained as thus [133]–[136]: 

if (duration=“-1:0:23” and protocol =“telnet” and source-port=-1 and destination-port=23 and 
source IP=“192.168.1.30” and destination IP =“192.168.0.20) then {log network connection as 
an Intrusion}. 

 
3. RESULTS AND DISCUSSION 
 
3.1. Training Performance Evaluation 
Training allows the ensemble to adjust its weights and biases. We tune the various hyper-parameters 
of the heuristic using a trial-n-error approach as in Table 2 as follows: max_depth, learning_rate, and 
n_estimators respectively with the hybrid ensemble training to yield an optimal solution [137]–[139]. 
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Table 2. Hyper-parameter Values 
Hyper-Parameters Definition Trial-n-Error Best Value 
Max-Depths Max. depth of trees [1, 2, 4, 5, 6, 8, 10] 5 
Learning Rate Step-size learning weights [0.1, 0.2, 0.3, 0.5, 0.75] 0.25 
N_Estimators Number of Neurons [100, 200, 300, 400, 500] 250 

 
Using the hyper-parameters as in Table 2, the ensemble yields the metrics to detect and effectively 
classify DDoS attacks.  
 
Table 3. Performance Evaluation with Benchmark ensembles 

ML Schemes F1 Accuracy Precision Recall 
Decision Tree (DT) 0.9805 0.9815 0.9805 0.9745 
Random Forest (RF) 0.9881 0,9968 0.9318 0.9848 
XGBoost 0.9925 0.9981 0.9541 0.9881 
Proposed Memetic Ensemble 0.9945 0.9984 0.9616 0.9890 

 
Table 3 shows our proposed ensemble yields F1 of 0.9945, and outperforms XGBoost, RF and DT (with 
F1 of 0.9925, 0.9881 and 0.9805 respectively). Our hybrid heuristic also yield an Accuracy of 0.9984 
to outperform XGBoost, RF and DT (with 0.9981, 0.9964 and 0.9815 respectively). The values for the 
respective Precision and Recall scores are detailed in Table 3 which agrees with [131], [140], [141]. 
 
3.2. Discussion of Findings 
It provides insights into which characteristics have a bigger influence on overall performance and aids 
in identifying the most important aspects influencing the model's predictions [142].  

 

 
Figure 2. Confusion matrix for Experimental Ensemble 

Figure 2 yields the confusion matrix values. This implies that our proposed experimental ensemble 
can correctly classify the test dataset (instances) with a 99.84% accuracy. It incorrectly classified only 
283-instances with 13,418 correctly classified test instances. 
 
4. CONCLUSIONS 
The chaotic nature of breaches vis-à-vis noisy dataset with its many features, will continue to yield 
studies into the use of deep ensemble learning heuristics as suitable mode to addressing many cyber-
attacks [143]. The variance and bias associated with ML tasks and its available dataset – also makes 
for the possibility of optimized training sample if greater performance must be achieved [144]–[146]. 
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We propose a deep ensemble (Genetic Algorithm Modular fused learning Neural Network) to detect 
packet behaviour and anomaly-based detection of malicious packets. We explored GA was due to its 
flexibility as an elitist model [147]; While, the MNN is used as a learning paradigm for modular learning 
components. Model validation return a confusion matrix with these values: TP = 50, TN = 2, FN = 5, 
FP = 3 [148], [149].. 
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