

137

 Vol. 5 No. 2, June 2017

CompCompCompComparative Perfarative Perfarative Perfarative Performance Evaluation ormance Evaluation ormance Evaluation ormance Evaluation oooof Congestion Control Algorithm f Congestion Control Algorithm f Congestion Control Algorithm f Congestion Control Algorithm in Harsh in Harsh in Harsh in Harsh

Environment.Environment.Environment.Environment.

F.Y.E F.Y.E F.Y.E F.Y.E MmueMmueMmueMmue

Department of Computer Science

River State University of Science & Technology

Port Harcourt, Nigeria

barifirste@gmail.com

KKKK.J. .J. .J. .J. UdohUdohUdohUdoh

Department of Computer Science

Akwa Ibom State University

Ikot Akpaden, Nigeria

kenjumboudo@yahoo.com

ABSTRACTABSTRACTABSTRACTABSTRACT

Packet congestion is an important issue in the transmission control protocol (TCP) [1]. A Particular router

algorithm related to congestion control is the queue management algorithm that manage the length of

packet queues by dropping packets when appropriate queue management method as employed by the

routers has been extensively studied by researchers and constitute vital issue in congestion contorl.Active

queue management (AQM) as an advanced form of router queue management has been proposed as a

router based mechanism for early detection of congestion in a network. This paper evaluates the

performance of AQM using four popular algorithm: Random early Detection (RED), Flow Random Early

Drop (FRED) Blue and stochastic fair blue and appling such baseline as size, and fairness among different

traffic flow thoughout delay queue length or (whether different flows get their fair share and resource

utilization (whether the link bandwidth is fully utilized). The overall merits of A QM for responsive flows

is also explore

KeyKeyKeyKeywwwwordsordsordsords: RED, FRED, BLUE, SFB, throughput, fairness queue size, delay.

The AIMS Research Journal Publication Series Publishes Research & Academic Contents in All Fields of Pure & Applied

Sciences, Environmental Sciences, Educational Technology, Science & Vocational Education, Engineering & Technology ISSN -

2488-8699 - This work is licensed under TTTThe Creative Commons Attribution 4.0he Creative Commons Attribution 4.0he Creative Commons Attribution 4.0he Creative Commons Attribution 4.0 License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons

P.O.Box 1866, Mountain View, CA 94042, USA.

Article Progress Time StampsArticle Progress Time StampsArticle Progress Time StampsArticle Progress Time Stamps

Article Type: Article Type: Article Type: Article Type: Research Article

Manuscript ReceivedManuscript ReceivedManuscript ReceivedManuscript Received: 12rd May, 2017

Review Review Review Review Type: Type: Type: Type: Blind

Review/Acceptance Information SentReview/Acceptance Information SentReview/Acceptance Information SentReview/Acceptance Information Sent : 12th June, 2016

Final AcceptanceFinal AcceptanceFinal AcceptanceFinal Acceptance:: 14th June, 2017

DOI PrefixDOI PrefixDOI PrefixDOI Prefix: 10.22624

Article Citation Format Article Citation Format Article Citation Format Article Citation Format

F.Y.E Mmue & K.J. Udoh (2017). Comparative Performance

Evaluation of Congestion Control Algorithm in Harsh

Environment..

Journal of Digital Innovations & Contemp Res. In Sc., Eng &

Tech. Vol. 5, No. 2. Pp 137-150

138

 Vol. 5 No. 2, June 2017

1. BACKGROUND TO THE STUDY1. BACKGROUND TO THE STUDY1. BACKGROUND TO THE STUDY1. BACKGROUND TO THE STUDY

Lack of attention to the dynamics of packet forwarding can result in severe service degradation or internet

meltdown [2]. A usuful effort made to take care of this lack of attention may result to the development of

congestion avoidance mechanisms that may be required in TCP implementation [3] .These mechanisms

operate in the host to cause TCP connections to “back off” during congestion. This is TCP flows

responsiveness to congestion signals. Primarly it is these TCP congestion avoidance algorithms that

prevent the congestion collapse of todays internet [4]

It has becomes clear that the TCP congestion avoidance mechanism while necessary and powerful, are not

sufficient to provide good service in all circumstance [5]. some mechanisms are needed in the routers to

complement that end point congestion avoidance mechanisms . Basically, two classes of router algorithms

that relate to congestion control exixt. Queue management and sheduling algorithms, while queue

management algorithms approximately manage the length of packet queues by dropping packets when

necessary, scheduling algorithms determine which packet to send next and are used primarily to manage the

allocation of bandwidth among flows through, these two router mechanisms are closely related, they address

different performances issues[6].

Active queue management is an advanced form of router queue management that can be used with a wide

variety of scheduling algorithms, can be implemented relatively efficiently, and will provide significant

inherent performance Improvement [7].

2.2.2.2. QUEUE MANAGEMENT QUEUE MANAGEMENT QUEUE MANAGEMENT QUEUE MANAGEMENT

Researchers and the IETF proposed active queue management (AQM) as a mechanisms for detecting

congestion inside the network and strongly recommended the deployment of AQM in routers as a

measure to preserve and improved performance. AQM algorithms run on routers and detect incipient

congestion by typically monitoring the instantaneors or average queue size [8]. When the average queue

size exceeds a certain threshhold but is still less than the capacity of the queue, AQM algorithms infer

congestion on the link and notify the end systems to back off by proactively dropping some of the packets

arriving at a router . Alternatively, instead of dropping a packet, AQM algorithms can also set a specific bit

in the header of thet packet and forward that packet toward the receiver after congestion has been

inferred upon receieving that packet the receiver in turns set another bit in its next ACKACKACKACK when the sender

receives this ACKACKACKACK it reduce it transmission rate as if its packet were lost [9].

2.1 2.1 2.1 2.1 The Need For Active Queue ManThe Need For Active Queue ManThe Need For Active Queue ManThe Need For Active Queue Management .agement .agement .agement .

Traditionally, Technique used to manage router queue length sets maximum length in terms of packet size

for each queue, packets are accepted for the queue untill the maximum length is attained, then drop

subsequent incoming packets untill the queue decreases . This technique is called “tail drop” since the

packet that arrived most recently , that is the one on the tail of the queue is dropped when the queue is full

[13]. This technique has two important setbacks [10]:

a. Lock out: A single connection or a few flows may monopolize queue space, preventing other

connections from gaining room in the queue. A phenomenon that occur often as the result of

synchronization or other timing effects [11].

b. The tail drop discipline: allows queue to maintain a full or almost full status for long periods of time

since packet drop only when the queue has become full it is important to reduce the steady-state

queue size, and this is perhaps queue management’s most important goal.

139

 Vol. 5 No. 2, June 2017

Besides tail drop, two alternative queue disciplines that can be applied when the queue becomes full

[13], “random drop on full” or drop front on full” under the random drop on full discipline, a router

drops a randomly selected packet from the queue when the queue is full and a new packet arrives.

Under the “drop front on full” discipline, the router drops the packet at the front of the queue when

the queue is full and a new packet arrive [14]. Both of these queue discipline solve the lock- out

problem but neither solve the full queue problem.

2.2 Goals of Active Queue Management 2.2 Goals of Active Queue Management 2.2 Goals of Active Queue Management 2.2 Goals of Active Queue Management

AQM was designed with primary and secondary goals to achieve in packet transmission. Controlling

average queuing delay, while the secondary goals, include.

• Improving fairness for example by reducing biases against bursty low bandwidth flows

• Reducing unnecessary packet drops.

• Reducing global synchronization especially for environments with small-scale statistical

multiplexing

• Accommodating transient congestion that last less than a round- trip time[18]. Vitally

summarize, an AQM mechanism can provide the following advantages for responsive flow :

� Reduce number of packets dropped in routers [11].

� Provide lower-delay interactive services .

� Avoid lock-out behaviour [15, 16, 17].

The primary purpose of a queue in internet protocol (IP) router is to smooth out bursty arrivals so that

the network utilization can be high. Disappointingly queue add delay and cause jilter in heavy traffic

cloud communication environment, Delay is the enemy to real time network transmission and

communication. Jilter is turned into delay at the receivers playout buffer, and inadvertently causing data

packets congestion in traffic network [19].

2.3 Queue Management Algorithm2.3 Queue Management Algorithm2.3 Queue Management Algorithm2.3 Queue Management Algorithm

2.3.1 RED RED RED RED [1] Was designed with the objectives to

(1) Minimize packet loss and queuing delay

(2) Avoid global synchronization of sources

(3) Maintain high link utilization and

(4) Remove biases against bursty source. The basic ideal behind RED queue management is to delect

incipient congestion early and to convey congestion notification to the end-host, allowing them to

reduce their transmission rates before queue in the network overflow and packets are dropped.

To do this, RED maintain an exponentially weighted moving average (EWMA) of the queue length which it

uses to delect congestion. When the average queue length exceed a minimum threshold (
min

h), packets are

randomly dropped or marked with an explicit congestion notification (ECN) bit [20].When the average

queue length exceeds a maximum threshold (
max

h) all packets are marked or dropped.

While RED is certainly an improvement over traditional drop tail queue, it has several shortcomings: One

of the fundamental problems with RED is that they rely on queue length as an estmator of congestion, while

the presence of a persistent queue indicates congestion, its length gives very little information as to the

severity of congestion that is, the number of competing connections sharing the link. In a busy period, a

single source transmitting at a rate greater than the bottleneck link capacity can cause a queue to build up

just as easily as a large number of sources can.

140

 Vol. 5 No. 2, June 2017

Since the RED algorithm relies on queue lengths, it has an inherent problem in determning the severity of

congestion. As a result, RED requires a wide range of parameters to operate correctly under different

congestion scenarios. While RED can achieve an ideal operating point, it can only do so when it has a

sufficient amount of buffer space and it is correctly parameterized.

RED represents a class of Queue managemet mechanisms that does not keep the state of each flow, that is,

they put the data from all the flows into one queue, and focus on their overall performance. It is that which

originate the problem cause by non-responsive flows. To deal with that, a few congestion control algorithms

have tried to separate different kind of data flows for example, fair queue [21], weighted fair queue etc. But

their perflow- schedulling philosophy is different with that of RED which we will not discuss here.

For each packet arrival calculate the new

average size qavg if min h<qavg<Max h

calculate probability Pa:with probability

pa:Mark/drop the arriving packet else if max

h<qavg drop the arriving packet

[General RED algorithm [22]

Vaviables Parameters

qavg;Average queue size Minh: Minimum Threshold

pa:packet marking or for Queue

dropping probability Maxh: Maximum Threshold

 for Queue

2.3.22.3.22.3.22.3.2 FREDFREDFREDFRED (Flow Random Early Drop) (FRED) (Flow Random Early Drop) (FRED) (Flow Random Early Drop) (FRED) (Flow Random Early Drop) (FRED)

[2] Is a modified version of RED, which uses per-active-flow accounting to make different dropping

decisions for connections with different bandwidth useage. FRED only keeps track of flows that have

packets in the buffer, thus the cost of FRED is proportional to the buffer size and independent of the total

flow number (including the short- lived and idle flow). FRED can achieve the benefits of per-flow queuing

and round robin scheduling with substaintially less complexity. Some other interesting features of FRED

include;

(1) penalizing non-adaptive flows by imposing a maximum number of buffered packet and surpassing

their share to average per- flow buffer usage.

(2) Protecting fragile flows by deterministically accepting flow from low bandwidth connections.

(3) Providing fair sharing for larger numbers of flows by using “two packet buffer” when buffer is used

up.

(4) Fixing several imperfections of RED by calculating average queue length at both packet arrival and

departure (which also causes more overhead).

Two parameters are introduced into FRED Minh and Maxh, which are minimum and maximum numbers of

packets that each flow is allow to buffer. In order to track the average per-active flow buffer usage, FRED

uses a global variable avgcq to estimate it. It maintains the number of active flows and for each of them,

FRED maintains a count of buffer packets qlen and a count of time when the flow is not responsive (qlen >

maxh,) FRED will penalize flows with high strike values. FRED processes arriving packets ucing the

following algorithm.

141

 Vol. 5 No. 2, June 2017

New Flow

?

Non-adaptive

Minth<avg<maxth

Calculate avg and maxq

Drop Trail

avg<minth

Yes

New State

No

Drop

Yes

RED

Robust

Accept

Fragile

No

No

No

FFFFigigigig 1111: : : : FRED processing arriving packetFRED processing arriving packetFRED processing arriving packetFRED processing arriving packet

BLUE is an active queue management algorithm to manage congestion control by packet loss and link

utilization history instead of queue occupancy. BLUE maintains a single probabiting Pa, to mark or drop)

packets. If the queue is continually dropping packets due to buffer overflow, BLUE increase Pa, thus

increasing the rate at which it sends back congestion notification or dropping packets conversely, if the

queue becomes empty or if the link is idle, BLUE decrease it marking probabity. This effectively allow

BLUE to “ learn” the correct rate it needs to send back congestion notification or dropping packet.

The typical parameters of BLUE are d1, d2 and freeze- time. d1 determines the amount by which pa is

increased when the queue overflows, while d2 determines the amount by which pa is decreased when the

link is idle. Freeze- time is an important parameter that determines the minimum time interval between two

successive updates of pa. This allows the changes in the marking probability to take effect before this value

is updated again. Based on those parameters, the basic BLUE algorithm can be summarized as follows:

142

 Vol. 5 No. 2, June 2017

2.3.42.3.42.3.42.3.4 SFBSFBSFBSFB Based on BLUE, stochastic fair BLUE (SFB) Based on BLUE, stochastic fair BLUE (SFB) Based on BLUE, stochastic fair BLUE (SFB) Based on BLUE, stochastic fair BLUE (SFB)

SFB Based on BLUE, stochastic fair BLUE (SFB) is a novel technique for protecting TCP flows against

non-responsive flows. SFB is a FIFO queuing algorithm that identifies and rate–limits non-responsive flows

on accounting mechanisms similar to those used with BLUE. SFB maintain accounting bins. The bins are

organized in L level with N bins in each level. In addition, SFB maintains L independent harsh functions

each associated with one level of the accounting bins are used to keep track of queue occupancy statistic of

packets belonging to a particular bins. As a packet arrives at the queue, it is hashed into one of the bins in

each of the L levels. If the number of packets mapped to a bin goes above a certain threshold. (ie the size

of the bin).

The packet dropping probability Pa for that bin is increased. If the number of packets in that bin drop to

zero, Pa is decreased. The observation is that a non- responsive flow quickly drives Pa to 1 in all of the L bins
it is harshed into. Responsive flow may share one or two bins with non-responsive flows, however unless the

number of non-responsive flow is extremely large compared to the number of bins a responsive flow is

likely to harshed into at least one bin that is not polluted with non-responsive flows and thus has a normal

value. The decision to mark a packet is based on Pmin the minimum Pa value of all bins to which the flow

is mapped into. If Pmin is 1, the packet is identified as belonging to a non- responsive flow and is then rate

limited.

B (1)(n) LXN array ofbins(L levels N bins per level

calculate hash function value ho, hi………hl-1

enque () update bins at each level

For i= 0 to L-1

If B(hi)(HI). QLENS > BIN- SIZE

B (1)(hi) Pm +=delte

Drop packet

Close if (B(0)(H0).Pm….B(L)(HI) PM)I

P min = min (B(0)(H0). Pm……B(L) (HL). PM)

If (Pmin ==1)

Rate limit ()

Else

Mark/ drop with probability Pmin

The typical parameters of SFB algorithm are qlen, Bin-size, d1 d2 freeze-time, NL, Boxtime, H-Interval. Bin-
size is the buffer space of each bin for each bin. Qlen is the actual queue length of each bin, d1 , d2, and

freez-time have the same meaning as that in BLUE. Beside, N and L are related to the size of the

accounting bins, for the bins are organized in L level with N bins in each level. Box time is used by penalty

box of SFB as a time interval used to control how much bandwidth those non-responsive flow could take

from bottleneck links. H interval is the time interval used to change harshing function.

Upon link idle event if (now-last update) > freeze time

Pa= Pa- d2

Last- update= now

Upon packet loss event if (now – last update)

> freeze – time)

Pa = pa+d1

Last- update= now

143

 Vol. 5 No. 2, June 2017

3.3.3.3. PERFORMANCE METRICS PERFORMANCE METRICS PERFORMANCE METRICS PERFORMANCE METRICS

The performance metrics used in this paper are Delay, Packet Loss, Queue Length or Queue size and

throughput

3.13.13.13.1 Delay Delay Delay Delay

Delay is the time elapsed while a packet travel from one point (e.g source premise or Network Ingress) to

another (e.g destination premise or Network degress). The larger, the value of delay, the more difficult.

It is transport layer protocols to maintain high bandwidths. This characteristic can be specified in a number

of different ways, including average delay, variance of delay (jitter), and delay bound. In this paper, we

calculated end to end delay.

3.2 Packet Loss3.2 Packet Loss3.2 Packet Loss3.2 Packet Loss

Packets can be lost in a network because they may be dropped when queue in the network node overflows.

The amount of packet loss during the steady state is another important property of a congestion control

scheme. The larger the value of packet loss, the more difficult it is for transport-layer protocols to maintain

high bandwidths, the sensitivity to loss of individual packets, as well as to frequency and patterns of loss

among longer packet sequence is strongly dependent on the application itself. This characteristic can be

specified in a number of different ways, including loss rate, loss patterns, loss free seconds, and conditional

loss probability. In this paper we considered that packet loss would occur only due to the dropping of the

packets. There is no loss due to other means.

3.3 Queue Length 3.3 Queue Length 3.3 Queue Length 3.3 Queue Length

A queuing system in network can be described as packet arriving for service, waiting for service, if it is not

immediate and if having waited for service, leaving the system after being served. This queue length is very

important characteristics to determine how well the active queue management of the congestion control

algorithm has been working.

3.4 Throughput3.4 Throughput3.4 Throughput3.4 Throughput

It is the primary performance measure characteristic and most widely used. It measures how soon the

receiver is able to get a certain amount of data send by the sender. This is determine as the ratio of the total

data received to the end to end delay. Throughput is an important factor which directly impacts the

Network Performance.

4. SIMULATION AND COMPARISON 4. SIMULATION AND COMPARISON 4. SIMULATION AND COMPARISON 4. SIMULATION AND COMPARISON

In this section, we will compare the performances of RED, FRED, BLUE and SFB. We use RED and Tail

drop as the evaluation baseline. Our simulation configuration is based on ns-2. Both RED and FRED have

implementation for ns-2, BLUE and SFB are originally implemented in a previous version of ns, ns-1 and

re-implemented in ns-2. In our simulation, ECN support is disabled and “marking a packet” means

“dropping a packet” [23].

4.1 Simulation Settin4.1 Simulation Settin4.1 Simulation Settin4.1 Simulation Settings gs gs gs

It is known that different Algorithms have different preferences or assumptions for the network

configuration and traffic pattern, one of the basic challenges in designing our simulation, is to select a typical

set of network topology and parameters such as link bandwidth, RTT, and gateway buffer size, as well as

load parameters such as the numbers of TCP and UDP flow, packet size, TCP window size, traffic patterns,

144

 Vol. 5 No. 2, June 2017

as the platform for evaluation. In this regard, we make extracts from reading related works, and combine

the key characteristics from their simulations.

Fig. 2Fig. 2Fig. 2Fig. 2: : : : Simulation Settings.Simulation Settings.Simulation Settings.Simulation Settings.

Figure 2 above is a classic dumb-bell configuration network topology. It is a typical setting that different

types of traffic share a bottleneck router. TCP (FTP application in particular), and UDP flows (CBR

application in particular) are chosen as typical traffic patterns. In this simulation, we use 10 TCP flows and 1

UDP flow. The bottleneck link in this setting is the link between two gateways. We set TCP window size as

100 packets, and the router queue buffer size in the simulation as 300 packets (the packet size for both TCP

and UDP are 1000 bytes). For RED, we set the values for Min and Max, as 20% and 80% queue buffer size.

4.2 Comparative Analysis 4.2 Comparative Analysis 4.2 Comparative Analysis 4.2 Comparative Analysis

Figure 3 and figure 4 below show the main result of the simulation. The sum of the throughput values for all

TCP and UDP flows are not shown here. For all the simulations, the total throughput are reasonably high

(about 91.05 percent of the available bandwidth), showing that all the algorithms under investigation provide

high link utilization. Figure 3.1 shows the UDP throughput and queue length under simulation. RED and

BLUE do not work well under high UDP sending rate. When UDP sending rate is above the bottleneck

link bandwidth, UDP flow quickly dominates the transmission on the bottleneck link and TCP flows only

share the remaining bandwidth. On the other hand, FRED and SFB properly penalize UDP flow. Figure

3.2 Illustrates the size of queue buffer occupied by UDP flow. It is our observation that buffer usage seems

to be a good indicator of link bandwidth utilization. Similar to figure 3.1 RED and BLUE are similar in

permissive to non-responsive flows, BLUE uses much less space, FRED and SFB are also the fairest.

Figure 3Figure 3Figure 3Figure 3(a)(a)(a)(a): : : : UDP flow throughputUDP flow throughputUDP flow throughputUDP flow throughput

145

 Vol. 5 No. 2, June 2017

Figure Figure Figure Figure 44443(b)3(b)3(b)3(b): : : : UDP flow queue sizeUDP flow queue sizeUDP flow queue sizeUDP flow queue size

Figure 4 illustrates the average queue size for UDP and TCP flows as well as the mean total buffer usage.

The difference of the algorithms is clearly shown in the buffer usage plots. We observe that FRED and SFB

effectively penalize UDP flow and allow TCP flows to achieve a higher throughput.

We interestingly notice the difference among the total queue sizes. RED, although begins to provide

congestion notification when the queue size reaches minh, it only affects TCP flows while UDP keep the

same sending rate, which drives the total queue size to maxh, quickly, after which all the incoming packets

will be dropped, and the total queue size will be kept at maxh. FRED, BLUE and SFB are not directly

affected by minh, and maxh, sendings, so their total queue sizes have no relation with these parameters in

figure 4.

(a)(a)(a)(a) (b)(b)(b)(b)

(c)(c)(c)(c) (d)(d)(d)(d)

Figure 4 Figure 4 Figure 4 Figure 4 queue size in different algorithms.queue size in different algorithms.queue size in different algorithms.queue size in different algorithms.

146

 Vol. 5 No. 2, June 2017

Figure 5 plots the actual response time for each achieved in RED, FRED, BLUE and SFB. It is observed

that minimum delay occurred in each algorithm is the same. We therefore conclude within reasonable limit

that each algorithm would get the same response time provided congestion has been observed because

queuing delay would be same for each algorithm if there is no congestion in Network.

Figure 5 (b) RED queue lengthFigure 5 (b) RED queue lengthFigure 5 (b) RED queue lengthFigure 5 (b) RED queue length

5 ALGORITHM CHARACTERISTICS 5 ALGORITHM CHARACTERISTICS 5 ALGORITHM CHARACTERISTICS 5 ALGORITHM CHARACTERISTICS

5.1 FRED 5.1 FRED 5.1 FRED 5.1 FRED

FRED algorithm focuses on the management of per-flow queue length. The parameter qlen is compare with

minh and maxh and used as a traffic classifier. Fragile flows are those whose qlen<minh Robust flows are those

whose minh<qlen<maxh, and non-responsive flows are those whose qlen was once larger than maxh. The minh is

set to 2 or 4, but can adapt to average queue length when there are only few robust flows as found in a LAN

environment with small RTT and larger buffer size. FRED is very robust in identifying different kind of

traffic and providing adaptive flows. Figure 4b shows the queue length of UDP flow and the sum of 10 TCP

flows. The UDP queue length was effectively limited to 10 packets, which is approximately the average

queue length. The single UDP flow is isolated and penalized without limiting the adaptive TCP flows.

 Figure 6 Impact of buffer size to FRED fairness.Figure 6 Impact of buffer size to FRED fairness.Figure 6 Impact of buffer size to FRED fairness.Figure 6 Impact of buffer size to FRED fairness.

FiFiFiFigure 5 (a) showing the RED Algogure 5 (a) showing the RED Algogure 5 (a) showing the RED Algogure 5 (a) showing the RED Algoririririththththmsmsmsms

147

 Vol. 5 No. 2, June 2017

Figure 6 shows the impact of buffer size to FRED algorithm. It is clear that FRED works well only when the

buffer is larger (larger than 45 packets in this case) enough to hold minq, packets for each active flow. When

the average queue length is larger than maxh, FRED degrade into drop tail and cannot preserve fairness.

The fairness of FRED is also illustrated in table 1. The share of UDP flows and TCP flows do not change

much as the bottleneck bandwidth increases from 0.5 MbPs to MbPs. After the bandwidth of backbone link

is large enough, the UDP flow gets its full share and TCP flows begin to compete with each other.

Table 1 showing the bottleneck bandwidth to FRED link utilizationTable 1 showing the bottleneck bandwidth to FRED link utilizationTable 1 showing the bottleneck bandwidth to FRED link utilizationTable 1 showing the bottleneck bandwidth to FRED link utilization

The FRED algorithm has an O(N) space requirement (N=buffer size), which was one of the major merit

compared with per-flow queuing mechanisms (e.g fair queuing). But with current memory cost, its space

requirement is not an important factor. The most significant is the computational resources for each packet.

For each arriving packet, FRED need to group the packet into a flow, update information and compute

average queue length (also done when a packet is leaving), and decide whether to accept or drop the packet.

Summarily, FRED achieves fairness and high link utilization by sharing the buffer size among active flows. It

is also easy to configure, and adapt itself to preserve performance under different network environments

(different bandwidth, buffer size, flow number), and traffic patterns (non-adaptive flows, robust adaptive

flows and fragile flows).

5.2 BLUE 5.2 BLUE 5.2 BLUE 5.2 BLUE

The most significant effect of using BLUE is that congestion control can be performed with a minimal

amount of buffer size. Other algorithms such as RED requires a large buffer size to attain the same goal

[24]. Figure 7 shows the average and actual queue length of the bottleneck link in our simulation based on

the following settings: 50 TCP flows with TCP window size 300 (KB), a bottleneck link queue size 300

(KB). As we observe from figure 7, the actual queue length in the bottleneck is always kept quite small

(about 100KB), while the actual capacity is as large as 300KB. Only about 1/3 buffer space is used to

achieve 0.94 Mbps bandwidth by TCP flows. The other 2/3 buffer space allows room for a burst of packets,

removing biases against bursty sources.

Figure 7 BLUE queuFigure 7 BLUE queuFigure 7 BLUE queuFigure 7 BLUE queue length for TCP flowse length for TCP flowse length for TCP flowse length for TCP flows

Botterieck

Bandwidth (MbPs)

0.5 1 2 4 8 10 20

TCP Thpt (mbps) 0.42 0.80 1.61 3.14 5.73 7.41 13.94

UDP Thpt (mbps) 0.08 0.16 0.29 0.66 1.82 1.86 1.96

TCP share percent 84% 81% 81% 78% 73% 74% 71%

UDP share percent 13% 15% 15% 17% 24% 10% 9%

TCP share: UDP share 6.93 5.33 5.80 4.60 3.13 3.90 7.77%

148

 Vol. 5 No. 2, June 2017

FFFFigure 8igure 8igure 8igure 8: : : : BLUE queue length for TCP and UDP flows.BLUE queue length for TCP and UDP flows.BLUE queue length for TCP and UDP flows.BLUE queue length for TCP and UDP flows.

However, simulation get worse when non responsive flows appear. Figure 8 shows the actual and average

queue length of the bottleneck link in our simulation when a 40 mbps UDP flow joins those 49 TCP flows.

Here the total throughput (TCP and UDP) achieved is 0.95 mbps, among which 0.01 mbps bandwidth is

taken by 49 TCP flows while the UDP flows throughput is as high as 0.94 mbps.

The slow fluctuation of the bottleneck queue length shown in figure 8 is reasonable. At t=40second, the

buffer of the bottleneck link is overflowed, so Pa increases to 1 quickly. Hence, all the incoming packets will

be dropped and in the nearwhile packets in the queue are dropped. Since Pa does not change until the link

is idle, the queue length shrinks to zero gradually. The queue length at t=48s is O. After that, the Pa is

decreased by BLUE. Then incoming packets could get a chance to enter queue, and the actual queue

length will gradually increase from zero accordingly.

5.3 SFB5.3 SFB5.3 SFB5.3 SFB

Basic SFB characteristics Basic SFB characteristics Basic SFB characteristics Basic SFB characteristics

Figure 9Figure 9Figure 9Figure 9: : : : SFB queue length for TCP flowsSFB queue length for TCP flowsSFB queue length for TCP flowsSFB queue length for TCP flows

149

 Vol. 5 No. 2, June 2017

Figure 10Figure 10Figure 10Figure 10: : : : SFB queue length for TCP and UDP flows.SFB queue length for TCP and UDP flows.SFB queue length for TCP and UDP flows.SFB queue length for TCP and UDP flows.

Although SFB is able to accurately identified and rate-limit a single non-responsive flow without affecting

the performance of any of the individual TCP flows, as the number of non-responsive flows increases, the

number of the parameters bin which become “polluted” or have Pa values of 1 increases. As a result of this,

the probability that a responsive flow becomes misclassified increases. To overcome this, the moving harsh

functions was implemented, that is, by changing the harsh function, responsive TCP flows that happen to

map into polluted bins will potentially be remapped into at least one unpolluted bin. However, in this case,

non-responsive flows can temporaily consume more bandwidth than their fair share. To remedy this, two

set of harsh functions are used.

Figure 9 shows the TCP flow queue length of the bottleneck link when there is no UDP flow. Here, the 49

TCP flows throughput is 0.93 mbps, while figure 10 shows the case when a 40mbps UDP flow joins. In this

case, the UDP flow’s throughput is only 0.027mbps while the 49 TCP flows throughput is still quite large

which consumes 0.926 mbps bandwidth of the bottleneck link. The UDP queue length is kept very small

(about 4.4KB) all the time, so that we could see that due to the effect of SFB’s double buffered moving

harsh, those non-responsive flows are effectively detected and rate-limited by SFB.

6. CONCLUSION6. CONCLUSION6. CONCLUSION6. CONCLUSION

In this paper, comparison had been made on four congestion control algorithms (RED, FRED, BLUE and

SFB) based on the results obtained from the simulation made. Algorithm characteristics of the algorithms

compared are also presented to give insight into our observations. We still find it difficult to conclude which

algorithm is better in all aspects than another, especially, when we consider the deployment complexity.

Summarily, we present the major trends of the comparative evaluation results in a table below.

Table 2 summary of result obtainedTable 2 summary of result obtainedTable 2 summary of result obtainedTable 2 summary of result obtained

Algorithm Algorithm Algorithm Algorithm Configuration Configuration Configuration Configuration

Complexity Complexity Complexity Complexity

Space Space Space Space

Requirement Requirement Requirement Requirement

PerPerPerPer----Flow State Flow State Flow State Flow State

Information Information Information Information

Fairness Fairness Fairness Fairness Link Link Link Link

Utilization Utilization Utilization Utilization

RED Difficult Large No Unfair Good

FRED Adaptive (Easy) Small Yes Fair Good

Blue Easy Small No Unfair Good

SFB Difficult Large No Fair Good

150

 Vol. 5 No. 2, June 2017

REFERENCES REFERENCES REFERENCES REFERENCES

1. Stevens W; “TCP Slow Start, Congestion Avoidance Fast Retransmit And Fast Recovery Algorithms”

RFC 2001, Jan 1997

2. V. Jackson, “Congestion Avoidance And Control”; ACM Sigcomm 88, August 1988

3. Wagle J. “Congestion Control In IP/TCP”; RFC896, January 1984.

4. Gaynor M; “Proactive Packet Dropping Methods For TCP Gateways” October 1996.

5. T. Blaskar Reddy, Ali Ahammed and Reshma Banu, “Performance Comparison Of Active Queue

Management Technique” In IJCSNS Vol.9 No.2, February 2009.

6. Shenker, S, Parthridge, C, and R Guerin, “Specification of Guranteed Quality of Service”, 1996 Work

In Progress.

7. T.V. Lakshman, Arnie Neidhardt, Tennis Ott; “The Drop Front Strategy In TCP Over ATM And Its

Interworking With Other Control Features” In FOCOM 96. MA 28.1

8. W. Willinger, M.S Taggu, R. Sherman, D.V. Wilson. “Self – Similarity Through High Variability

Statistical Analysis Of Ethernet LAN Traffic At The Source Load”, ACM SIGCOMM 95, August 1995

9. Floyd, S; “Connection With Multiple Congested Gateway In Packet Switched Networks”, Part 1: One

Way Traffic Computer Communication Review, Vol 21 No.5, October 1991

10. G.F. Ali Ahammed, Reshma Banu “Analyzing The Performance Of Active Queue Management

Algorithm” International Journal Of Computer Networks And Communication (2010).

11. Demers, A, Kesh, S, and Shenker S, “Analysis and Simulation of a Fair Queueing Research and

Experience Vol. 9, 1990.

12. Floyd, S. And Jacobson , V; “Link Sharing And Resource Management Models For Packet Networks”;

IEEE/ACM Transactions On Networking Vol. 3, No. 4, August 1995

13. S. Paul P. Gopia and Singh. “Performance Measure of Drop Tail and RED”; Proceeding of ICEP,

2010

14. Monley, R. “Reducing Packet Loss and Latency by Active Queue Management Algorithm” CSCI 3902.

Seminar 1, UMM CSCI Twiki; (2003).

15. Aflualiya S. Lapsley D.E Low S.H Randomly Early Marking For Internet Congestion Control”

IEEE/ACM Transaction On Networking Vol.15, No.3 (2001).

16. D. Lin and R. Morris

“Random Early Dectation” ACM SIGCOMM Computer Communication Review, Vol. 27 No.4

17. B. Braden et al Recommendation on “Queue Management and Congestion Avoidance in Internet”,

RFC 2309; (1998)

18. B. Braden, Estrin B. Clark, D, Crow J, Decring, Dfloyd, S, Jacobson, et al Recommendations on

“Queue Management And Congestion Avoidance In The Internet”, Internet Draft. (1998).

19. Ningning HU, LIUREN, Jichuan Chang, “Evaluation of Queue Management Algorithms” Class

Project Report for 15-744 Computer Networks

20. T. Bonald et al “Analytic Evaluation of RED Performance” in Proceeding of IEEE INFOCOM, 2000

21. J. Zhino and R Govindin “Understanding Packet Delivery Performance In Dense Wireless Sensor

Networks” In Proceeding Of ACM Subsys. 2003

22. Feng W., Kandlur D, Saha D, Shin K. “A self – Configuring RED Gateway”; In Proceeding of

IEEE/INFOCOM. (1999)

23. S. Mascolo, C. Casette, M. Gerla S.S Lee, And M Sanadidi; “TCP Westwood, Congestion Control

With Fast Recovery” Technical Report 2000

24. M. Ahman, V. Paxson, and W. Stevens “TCP Congestion Control” RFC 2581; April 1999.

