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ABSTRACTABSTRACTABSTRACTABSTRACT    

 

Packet congestion is an important issue in the transmission control protocol (TCP) [1]. A Particular router 

algorithm related to congestion control is the queue management algorithm that manage the length of 

packet queues by dropping packets when appropriate queue management method as employed by the 

routers has been extensively studied by researchers  and constitute vital issue in congestion contorl.Active 

queue management (AQM) as an advanced form of router queue management has been proposed as a 

router based mechanism for early detection of congestion in a network. This paper evaluates the 

performance of AQM using four popular algorithm: Random early  Detection (RED), Flow  Random Early 

Drop (FRED) Blue  and stochastic fair blue and  appling such baseline as size, and fairness among  different 

traffic flow thoughout  delay queue length or ( whether different flows get their fair  share  and resource 

utilization  (whether  the link bandwidth is fully utilized). The overall merits of A QM for  responsive flows 

is also explore  
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1.  BACKGROUND TO THE STUDY1.  BACKGROUND TO THE STUDY1.  BACKGROUND TO THE STUDY1.  BACKGROUND TO THE STUDY    

 

Lack of attention to the dynamics of packet forwarding can result in severe  service degradation or internet 

meltdown [2]. A usuful effort made to take care of this lack of attention may result to the development of 

congestion  avoidance mechanisms that may be required in TCP implementation [3] .These mechanisms  

operate in the host to cause TCP connections to “back off”  during congestion. This is TCP flows 

responsiveness  to congestion  signals. Primarly it is these TCP congestion avoidance algorithms that 

prevent the congestion collapse of todays internet [4]    

 

It has becomes clear  that the TCP congestion avoidance mechanism while necessary and powerful, are not 

sufficient to provide good service in all circumstance [5]. some mechanisms are  needed in the routers to 

complement that end point congestion avoidance mechanisms . Basically, two classes of router algorithms 

that relate to congestion control exixt. Queue management and sheduling algorithms, while queue 

management algorithms approximately  manage the length of packet queues by dropping packets when 

necessary, scheduling algorithms determine which packet to send next and are used primarily to manage the 

allocation of bandwidth among flows through, these two router mechanisms are closely related, they address 

different performances issues[6].  

 

Active queue management is an advanced form of router queue management that can be used with a wide 

variety of scheduling algorithms, can be implemented relatively efficiently, and will provide significant 

inherent performance Improvement [7]. 

 

2.2.2.2.    QUEUE MANAGEMENT QUEUE MANAGEMENT QUEUE MANAGEMENT QUEUE MANAGEMENT     

 

Researchers and the IETF proposed active queue management (AQM) as a mechanisms for detecting 

congestion  inside the network and strongly recommended the deployment of AQM in  routers as a 

measure to preserve and improved performance. AQM algorithms run on  routers and detect incipient 

congestion by typically monitoring the instantaneors or average queue size [8]. When the  average queue  

size exceeds a certain threshhold but is still less than the capacity of the queue, AQM algorithms infer 

congestion on the link  and notify the end systems  to back off by proactively dropping some of the packets 

arriving  at a router . Alternatively, instead of dropping a packet, AQM algorithms can also set a specific  bit 

in the header of thet packet and  forward that packet toward the receiver after  congestion  has  been 

inferred upon receieving that packet the receiver in turns set another bit in its next ACKACKACKACK when the sender 

receives  this     ACKACKACKACK  it reduce it transmission rate as if its  packet were lost [9]. 

 

2.1 2.1 2.1 2.1 The Need For Active Queue ManThe Need For Active Queue ManThe Need For Active Queue ManThe Need For Active Queue Management .agement .agement .agement .    

Traditionally, Technique used to manage router queue  length sets maximum length in terms of packet size 

for each queue, packets are accepted  for the queue  untill the maximum length  is attained, then drop 

subsequent incoming  packets untill the queue decreases . This technique is called “tail drop” since the 

packet that arrived most recently , that  is the one on the tail of the queue is dropped when the queue is full 

[13]. This technique has two important setbacks [10]: 

a. Lock out: A single connection or a few flows may monopolize queue space, preventing other 

connections from gaining room in the queue. A phenomenon that occur often as the result of 

synchronization or other timing effects [11]. 

b. The tail drop discipline: allows queue to maintain a full or almost full status for long periods of time 

since packet drop only when the queue has  become  full  it is important to reduce the steady-state 

queue size, and this is perhaps  queue  management’s most important  goal. 



                                                                                                                                                               

    

 

139 

 
                    Vol. 5  No. 2, June  2017 

        

Besides tail drop, two alternative queue disciplines that can be applied when the queue becomes full 

[13], “random drop on full” or drop front on full” under the random drop on full discipline,  a router 

drops a randomly selected packet from the queue  when the queue is full and  a new packet arrives. 

Under the “drop front on full” discipline, the router drops the packet at the front of the queue when 

the queue is full and a new packet arrive [14]. Both of these queue discipline solve the lock- out 

problem but neither solve the  full queue problem. 

    

2.2 Goals of Active Queue Management 2.2 Goals of Active Queue Management 2.2 Goals of Active Queue Management 2.2 Goals of Active Queue Management     

AQM was designed with primary  and secondary goals to achieve in packet transmission.  Controlling 

average queuing delay, while the secondary goals, include. 

• Improving fairness for example by reducing biases against bursty low bandwidth flows  

• Reducing unnecessary packet drops. 

• Reducing global synchronization especially for environments with small-scale   statistical 

multiplexing  

• Accommodating transient  congestion that last less than a round- trip  time[18]. Vitally 

summarize, an AQM  mechanism can provide the following  advantages for responsive flow : 

 

� Reduce number of packets dropped in routers [11]. 

� Provide lower-delay interactive services . 

� Avoid lock-out behaviour [15, 16, 17]. 

 

The primary purpose of a queue in  internet protocol (IP) router is to smooth out bursty arrivals so that 

the network utilization can be high. Disappointingly queue  add delay and  cause jilter in heavy traffic 

cloud communication environment, Delay is the enemy to real time network transmission and 

communication. Jilter is turned into delay at the receivers playout buffer, and inadvertently causing data 

packets  congestion in traffic network [19]. 

 

2.3 Queue Management Algorithm2.3 Queue Management Algorithm2.3 Queue Management Algorithm2.3 Queue Management Algorithm    

2.3.1 RED RED RED RED [1] Was designed with the objectives to  

(1) Minimize packet loss and queuing delay  

(2) Avoid global synchronization of sources 

(3) Maintain high link utilization and  

(4) Remove biases against bursty source. The basic ideal behind RED queue management is to delect 

incipient congestion early and to convey congestion notification to the end-host, allowing them to 

reduce their transmission rates before queue in the network overflow and packets are dropped. 

 

To do this, RED maintain an exponentially weighted moving average (EWMA) of the queue length which it 

uses to delect congestion. When the average queue length exceed a minimum threshold (
min

h), packets are 

randomly dropped or marked with an explicit congestion notification (ECN) bit [20].When the average 

queue length exceeds a maximum threshold (
max

h) all packets are marked or dropped. 

 

While RED is certainly an improvement over traditional drop tail queue, it has several shortcomings: One 

of the fundamental problems with RED is that they rely on queue length as an estmator of congestion, while 

the presence of a persistent queue indicates congestion, its length gives very little information as to the 

severity of congestion that is, the number of competing connections sharing the link. In a busy period, a 

single source  transmitting at a rate greater than the bottleneck link capacity can cause a queue to build up 

just as easily as a large number of sources can.  
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Since the RED algorithm relies on queue lengths, it has an inherent problem in determning the severity of 

congestion. As a result, RED requires a wide range of parameters to operate correctly under different 

congestion scenarios. While RED can achieve an ideal operating point, it can only do so when it has a 

sufficient amount of buffer space and it is  correctly parameterized. 

 

RED represents a class of Queue managemet  mechanisms that does not keep the state of each flow, that is, 

they put the data from all the flows into one queue, and focus on their overall performance. It is that which 

originate the  problem cause by non-responsive flows. To deal with that, a few congestion control algorithms 

have tried to separate different kind of data flows for example,  fair queue [21], weighted fair queue etc. But 

their perflow- schedulling philosophy is  different with that of RED which we will not discuss here.  

 

For each packet arrival calculate the new 

average size qavg if min h<qavg<Max h 

calculate probability Pa:with probability 

pa:Mark/drop the arriving packet else if max 

h<qavg drop the arriving packet 
 

[General RED algorithm [22]  

 

Vaviables              Parameters 

qavg;Average queue size Minh: Minimum Threshold 

pa:packet marking or  for Queue  

dropping probability    Maxh: Maximum Threshold  

   for Queue  
    

2.3.22.3.22.3.22.3.2    FREDFREDFREDFRED    (Flow Random Early Drop) (FRED) (Flow Random Early Drop) (FRED) (Flow Random Early Drop) (FRED) (Flow Random Early Drop) (FRED)     

[2] Is a modified version of RED, which uses per-active-flow accounting to make different dropping 

decisions for connections with different bandwidth useage.  FRED only keeps track of flows that have 

packets in the buffer, thus the cost of  FRED is proportional to the buffer size and independent of the total 

flow number (including the  short- lived and idle flow). FRED can achieve the benefits of per-flow queuing 

and round robin scheduling with substaintially less complexity.  Some other interesting features of FRED  

include; 

(1) penalizing non-adaptive flows by imposing a maximum number of buffered packet and surpassing 

their share to average per- flow  buffer usage.  

(2) Protecting fragile flows by deterministically accepting flow from low bandwidth connections. 

(3) Providing fair sharing for larger numbers of flows by using “two packet buffer” when buffer is used 

up. 

(4) Fixing several imperfections of RED by calculating average queue length at both packet arrival and 

departure (which also causes more overhead). 

 

Two parameters are introduced into FRED Minh and Maxh, which are minimum and maximum numbers of 

packets that each flow is allow to buffer. In order to track the average per-active  flow buffer usage, FRED 

uses a global variable avgcq to estimate it. It maintains the number of active flows and for each of them, 

FRED maintains a count of buffer packets qlen and a count of time when the flow is not responsive (qlen > 

maxh,) FRED will penalize flows with high strike values. FRED processes arriving packets ucing the 

following algorithm. 
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FFFFigigigig    1111: : : : FRED processing arriving packetFRED processing arriving packetFRED processing arriving packetFRED processing arriving packet    

 

BLUE is an active queue management algorithm to manage congestion control by packet loss and link 

utilization history instead of queue occupancy. BLUE maintains a single probabiting  Pa, to mark or drop) 

packets.  If the queue is continually dropping packets due to buffer overflow, BLUE increase Pa, thus 

increasing the rate at which it sends back congestion notification or dropping packets conversely, if the 

queue becomes empty or if the link is idle, BLUE decrease it marking probabity. This effectively allow 

BLUE to “ learn” the correct rate it needs  to send back congestion notification or dropping packet.  

 

The typical parameters of BLUE  are  d1, d2 and freeze- time. d1 determines the amount by which pa is 

increased when the queue overflows, while d2 determines the amount by which pa is decreased when the 

link is idle. Freeze- time is an important parameter that determines the minimum time interval between two 

successive updates of pa.  This allows the changes in the marking probability to take effect before this value  

is updated again. Based on those parameters, the basic BLUE algorithm can be summarized as follows: 
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2.3.42.3.42.3.42.3.4    SFBSFBSFBSFB    Based on BLUE, stochastic fair BLUE (SFB) Based on BLUE, stochastic fair BLUE (SFB) Based on BLUE, stochastic fair BLUE (SFB) Based on BLUE, stochastic fair BLUE (SFB)     

SFB Based on BLUE, stochastic fair BLUE (SFB) is a novel technique for protecting TCP flows against 

non-responsive flows.  SFB is a FIFO queuing algorithm that identifies and rate–limits non-responsive flows 

on accounting mechanisms similar to those used with BLUE. SFB maintain accounting bins. The bins are 

organized  in L level with N bins  in each level. In addition, SFB maintains L independent harsh functions 

each associated with one level of the accounting bins are used to  keep track of queue occupancy statistic of 

packets belonging to a particular bins. As a packet arrives at the queue, it is hashed into one of the bins in 

each of the  L levels. If the number of packets mapped to a bin goes above a certain threshold. (ie the size 

of the bin).  

 

The packet dropping probability Pa for that bin is increased. If the number of packets in that bin drop to 

zero, Pa is decreased. The observation is that a non- responsive flow quickly drives Pa to 1 in all of the L bins 
it is harshed into. Responsive flow may share one or two bins with non-responsive flows, however unless the 

number of non-responsive flow is extremely large compared to the number of bins a responsive flow is 

likely to harshed into at least one bin that is  not  polluted with non-responsive  flows and thus has a normal 

value. The  decision  to  mark a packet is  based on  Pmin  the minimum  Pa value of all bins to which the flow 

is mapped into. If Pmin is 1, the packet is identified as belonging to a non- responsive flow and is then rate 

limited. 

 
 

 

 

 

 

 

 

 

 

B (1)(n) LXN array ofbins(L levels N bins per level 

calculate hash function value ho, hi………hl-1  

enque () update bins at  each level  

For i= 0 to L-1 

If B(hi)(HI). QLENS > BIN- SIZE  

B (1)(hi) Pm +=delte 

Drop packet  

Close if (B(0)(H0).Pm….B(L)(HI) PM )I  

P min = min (B(0)(H0). Pm……B(L) (HL). PM) 

If (Pmin ==1) 

Rate limit () 

Else  

Mark/ drop with probability Pmin 

 
 

The typical parameters of SFB algorithm are qlen, Bin-size, d1 d2 freeze-time, NL, Boxtime, H-Interval. Bin-
size is the buffer space of each bin for each bin. Qlen is the actual queue length of each bin, d1 , d2,  and  

freez-time have the same meaning as that in  BLUE. Beside, N and  L are related to the size of the 

accounting bins, for the bins are organized in L level with N bins in each  level. Box time is used by penalty 

box of SFB as a time interval used to control how much bandwidth those non-responsive flow could take 

from bottleneck links. H interval is the time interval used to change harshing function. 

Upon link idle event if (now-last update) > freeze time  

Pa= Pa- d2  

Last- update= now  

Upon packet loss event if ( now – last update) 

> freeze – time)  

 

Pa = pa+d1  

Last- update= now 
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3.3.3.3.    PERFORMANCE METRICS PERFORMANCE METRICS PERFORMANCE METRICS PERFORMANCE METRICS     

 

The performance metrics used in this paper are Delay, Packet Loss, Queue Length or Queue size and 

throughput  

    

3.13.13.13.1    Delay Delay Delay Delay     

Delay is the time elapsed while a packet travel from one point (e.g source premise or Network Ingress) to 

another (e.g destination premise or Network degress). The larger, the value of delay, the more difficult. 

It is transport layer protocols to maintain high bandwidths.  This characteristic can be specified in a number 

of different ways, including average delay, variance of delay (jitter), and delay bound. In this paper, we 

calculated end to end delay. 

    

3.2 Packet Loss3.2 Packet Loss3.2 Packet Loss3.2 Packet Loss    

Packets can be lost in a network because they may be dropped when queue in the network node overflows. 

The amount of packet loss during the steady state is another important property of a congestion control 

scheme. The larger the value of packet loss, the more difficult it is for transport-layer protocols to maintain 

high bandwidths, the sensitivity to loss of individual packets, as well as to frequency and patterns of loss 

among longer packet sequence is strongly dependent on the application itself. This characteristic can be 

specified in a number of different ways, including loss rate, loss patterns, loss free seconds, and conditional 

loss probability. In this paper we considered that packet loss would occur only due to the dropping of the 

packets. There is no loss due to other means. 

 

3.3 Queue Length 3.3 Queue Length 3.3 Queue Length 3.3 Queue Length     

A queuing system in network can be described as packet arriving for service, waiting for service, if it is not 

immediate and if having waited for service, leaving the system after being served. This queue length is very 

important characteristics to determine how well the active queue management of the congestion control 

algorithm has been working. 

    

3.4 Throughput3.4 Throughput3.4 Throughput3.4 Throughput    

It is the primary performance measure characteristic and most widely used. It measures how soon the 

receiver is able to get a certain amount of data send by the sender. This is determine as the ratio of the total 

data received to the end to end delay. Throughput is an important factor which directly impacts the 

Network Performance. 

 

4. SIMULATION AND COMPARISON 4. SIMULATION AND COMPARISON 4. SIMULATION AND COMPARISON 4. SIMULATION AND COMPARISON     

 

In this section, we will compare the performances of RED, FRED, BLUE and SFB. We use RED and Tail 

drop as the evaluation baseline. Our simulation configuration is based on ns-2. Both RED and FRED have 

implementation for ns-2, BLUE and SFB are originally implemented in a previous version of ns, ns-1 and 

re-implemented in ns-2. In our simulation, ECN support is disabled and “marking a packet” means 

“dropping a packet” [23]. 

    

4.1 Simulation Settin4.1 Simulation Settin4.1 Simulation Settin4.1 Simulation Settings gs gs gs     

It is known that different Algorithms have different preferences or assumptions for the network 

configuration and traffic pattern, one of the basic challenges in designing our simulation, is to select a typical 

set of network topology and parameters such as link bandwidth, RTT, and gateway buffer size, as well as 

load parameters such as the numbers of TCP and UDP flow, packet size, TCP window size, traffic patterns, 
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as the platform for evaluation. In this regard, we make extracts from reading related works, and combine 

the key characteristics from their simulations.     

 

 
Fig. 2Fig. 2Fig. 2Fig. 2: : : : Simulation Settings.Simulation Settings.Simulation Settings.Simulation Settings.    

 

Figure 2 above is a classic dumb-bell configuration network topology. It is a typical setting that different 

types of traffic share a bottleneck router. TCP (FTP application in particular), and UDP flows (CBR 

application in particular) are chosen as typical traffic patterns. In this simulation, we use 10 TCP flows and 1 

UDP flow. The bottleneck link in this setting is the link between two gateways. We set TCP window size as 

100 packets, and the router queue buffer size in the simulation as 300 packets (the packet size for both TCP 

and UDP are 1000 bytes). For RED, we set the values for Min and Max, as 20% and 80% queue buffer size.  

    

4.2 Comparative Analysis 4.2 Comparative Analysis 4.2 Comparative Analysis 4.2 Comparative Analysis     

Figure 3 and figure 4 below show the main result of the simulation. The sum of the throughput values for all 

TCP and UDP flows are not shown here. For all the simulations, the total throughput are reasonably high 

(about 91.05 percent of the available bandwidth), showing that all the algorithms under investigation provide 

high link utilization. Figure 3.1 shows the UDP throughput and queue length under simulation. RED and 

BLUE do not work well under high UDP sending rate. When UDP sending rate is above the bottleneck 

link bandwidth, UDP flow quickly dominates the transmission on the bottleneck link and TCP flows only 

share the remaining bandwidth. On the other hand, FRED and SFB properly penalize UDP flow. Figure 

3.2 Illustrates the size of queue buffer occupied by UDP flow. It is our observation that buffer usage seems 

to be a good indicator of link bandwidth utilization. Similar to figure 3.1 RED and BLUE are similar in 

permissive to non-responsive flows, BLUE uses much less space, FRED and SFB are also the fairest. 

 

 
    

Figure 3Figure 3Figure 3Figure 3(a)(a)(a)(a): : : : UDP flow throughputUDP flow throughputUDP flow throughputUDP flow throughput    
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Figure Figure Figure Figure 44443(b)3(b)3(b)3(b): : : : UDP flow queue sizeUDP flow queue sizeUDP flow queue sizeUDP flow queue size    

 

Figure 4 illustrates the average queue size for UDP and TCP flows as well as the mean total buffer usage. 

The difference of the algorithms is clearly shown in the buffer usage plots. We observe that FRED and SFB 

effectively penalize UDP flow and allow TCP flows to achieve a higher throughput. 

 

We interestingly notice the difference among the total queue sizes. RED, although begins to provide 

congestion notification when the queue size reaches minh, it only affects TCP flows while UDP keep the 

same sending rate, which drives the total queue size to maxh, quickly, after which all the incoming packets 

will be dropped, and the total queue size will be kept at maxh. FRED, BLUE and SFB are not directly 

affected by minh, and maxh, sendings, so their total queue sizes have no relation with these parameters in 

figure 4. 

    
(a)(a)(a)(a)            (b)(b)(b)(b)    

    

    
(c)(c)(c)(c)            (d)(d)(d)(d)    

Figure 4 Figure 4 Figure 4 Figure 4 queue size in different algorithms.queue size in different algorithms.queue size in different algorithms.queue size in different algorithms.    



                                                                                                                                                               

    

 

146 

 
                    Vol. 5  No. 2, June  2017 

        

Figure 5 plots the actual response time for each achieved in RED, FRED, BLUE and SFB. It is observed 

that minimum delay occurred in each algorithm is the same. We therefore conclude within reasonable limit 

that each algorithm would get the same response time provided congestion has been observed because 

queuing delay would be same for each algorithm if there is no congestion in Network. 

 

 

 
Figure 5 (b) RED queue lengthFigure 5 (b) RED queue lengthFigure 5 (b) RED queue lengthFigure 5 (b) RED queue length    

    

    

5 ALGORITHM CHARACTERISTICS 5 ALGORITHM CHARACTERISTICS 5 ALGORITHM CHARACTERISTICS 5 ALGORITHM CHARACTERISTICS     

    

5.1 FRED 5.1 FRED 5.1 FRED 5.1 FRED     

FRED algorithm focuses on the management of per-flow queue length. The parameter qlen is compare with 

minh and maxh and used as a traffic classifier. Fragile flows are those whose qlen<minh Robust flows are those 

whose minh<qlen<maxh, and non-responsive flows are those whose qlen was once larger than maxh. The minh is 

set to 2 or 4, but can adapt to average queue length when there are only few robust flows as found in a LAN 

environment with small RTT and larger buffer size. FRED is very robust in identifying different kind of 

traffic and providing adaptive flows. Figure 4b shows the queue length of UDP flow and the sum of 10 TCP 

flows. The UDP queue length was effectively limited to 10 packets, which is approximately the average 

queue length. The single UDP flow is isolated and penalized without limiting the adaptive TCP flows. 

 

 
    Figure 6 Impact of buffer size to FRED fairness.Figure 6 Impact of buffer size to FRED fairness.Figure 6 Impact of buffer size to FRED fairness.Figure 6 Impact of buffer size to FRED fairness.    

 

FiFiFiFigure 5 (a) showing the RED Algogure 5 (a) showing the RED Algogure 5 (a) showing the RED Algogure 5 (a) showing the RED Algoririririththththmsmsmsms    
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Figure 6 shows the impact of buffer size to FRED algorithm. It is clear that FRED works well only when the 

buffer is larger (larger than 45 packets in this case) enough to hold minq, packets for each active flow. When 

the average queue length is larger than maxh, FRED degrade into drop tail and cannot preserve fairness. 

The fairness of FRED is also illustrated in table 1. The share of UDP flows and TCP flows do not change 

much as the bottleneck bandwidth increases from 0.5 MbPs to MbPs. After the bandwidth of backbone link 

is large enough, the UDP flow gets its full share and TCP flows begin to compete with each other. 

    

Table 1 showing the bottleneck bandwidth to FRED link utilizationTable 1 showing the bottleneck bandwidth to FRED link utilizationTable 1 showing the bottleneck bandwidth to FRED link utilizationTable 1 showing the bottleneck bandwidth to FRED link utilization    

 

The FRED algorithm has an O(N) space requirement (N=buffer size), which was one of the major merit 

compared with per-flow queuing mechanisms (e.g fair queuing). But with current memory cost, its space 

requirement is not an important factor. The most significant is the computational resources for each packet. 

For each arriving packet, FRED need to group the packet into a flow, update information and compute 

average queue length (also done when a packet is leaving), and decide whether to accept or drop the packet. 

Summarily, FRED achieves fairness and high link utilization by sharing the buffer size among active flows. It 

is also easy to configure, and adapt itself to preserve performance under different network environments 

(different bandwidth, buffer size, flow number), and traffic patterns (non-adaptive flows, robust adaptive 

flows and fragile flows). 

 

5.2 BLUE 5.2 BLUE 5.2 BLUE 5.2 BLUE     

The most significant effect of using BLUE is that congestion control can be performed with a minimal 

amount of buffer size. Other algorithms such as RED requires a large buffer size to attain the same goal 

[24]. Figure 7 shows the average and actual queue length of the bottleneck link in our simulation based on 

the following settings: 50 TCP flows with TCP window size 300 (KB), a bottleneck link queue size 300 

(KB). As we observe from figure 7, the actual queue length in the bottleneck is always kept quite small 

(about 100KB), while the actual capacity is as large as 300KB. Only about 1/3 buffer space is used to 

achieve 0.94 Mbps bandwidth by TCP flows. The other 2/3 buffer space allows room for a burst of packets, 

removing biases against bursty sources. 

 

    
Figure 7 BLUE queuFigure 7 BLUE queuFigure 7 BLUE queuFigure 7 BLUE queue length for TCP flowse length for TCP flowse length for TCP flowse length for TCP flows    

Botterieck  

Bandwidth  (MbPs) 

0.5 1 2 4 8 10 20 

TCP Thpt  (mbps) 0.42 0.80 1.61 3.14 5.73 7.41 13.94 

UDP Thpt  (mbps) 0.08 0.16 0.29 0.66 1.82 1.86 1.96 

TCP share percent  84% 81% 81% 78% 73% 74% 71% 

UDP share percent  13% 15% 15% 17% 24% 10% 9% 

TCP share: UDP share   6.93 5.33 5.80 4.60 3.13 3.90 7.77% 
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FFFFigure 8igure 8igure 8igure 8: : : : BLUE queue length for TCP and UDP flows.BLUE queue length for TCP and UDP flows.BLUE queue length for TCP and UDP flows.BLUE queue length for TCP and UDP flows.    

    

However, simulation get worse when non responsive flows appear. Figure 8 shows the actual and average 

queue length of the bottleneck link in our simulation when a 40 mbps UDP flow joins those 49 TCP flows. 

Here the total throughput (TCP and UDP) achieved is 0.95 mbps, among which 0.01 mbps bandwidth is 

taken by 49 TCP flows while the UDP flows throughput is as high as 0.94 mbps.  

The slow fluctuation of the bottleneck queue  length shown in figure 8 is reasonable. At t=40second, the 

buffer of the bottleneck link is overflowed, so Pa increases to 1 quickly. Hence, all the incoming packets will 

be dropped and in the nearwhile packets in the queue are dropped. Since Pa does not change until the link 

is idle, the queue length shrinks to zero gradually. The queue length at t=48s is O. After that, the Pa is 

decreased by BLUE. Then incoming packets could get a chance to enter queue, and the actual queue 

length will gradually increase from zero accordingly. 

    

5.3 SFB5.3 SFB5.3 SFB5.3 SFB    

Basic SFB characteristics Basic SFB characteristics Basic SFB characteristics Basic SFB characteristics     

    
Figure 9Figure 9Figure 9Figure 9: : : : SFB queue length for TCP flowsSFB queue length for TCP flowsSFB queue length for TCP flowsSFB queue length for TCP flows    
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Figure 10Figure 10Figure 10Figure 10: : : : SFB queue length for TCP and UDP flows.SFB queue length for TCP and UDP flows.SFB queue length for TCP and UDP flows.SFB queue length for TCP and UDP flows.    

 

Although SFB is able to accurately identified and rate-limit a single non-responsive flow without affecting 

the performance of any of the individual TCP flows, as the number of non-responsive flows increases, the 

number of the parameters bin which become “polluted” or have Pa values of 1 increases. As a result of this, 

the probability that a responsive flow becomes misclassified increases. To overcome this, the moving harsh 

functions was implemented, that is, by changing the harsh function, responsive TCP flows that happen to 

map into polluted bins will potentially be remapped into at least one unpolluted bin. However, in this case, 

non-responsive flows can temporaily consume more bandwidth than their fair share. To remedy this, two 

set of harsh functions are used. 

 

Figure 9 shows the TCP flow queue length of the bottleneck link when there is no UDP flow. Here, the 49 

TCP flows throughput is 0.93 mbps, while figure 10 shows the case when a 40mbps UDP flow joins. In this 

case, the UDP flow’s throughput is only 0.027mbps while the 49 TCP flows throughput is still quite large 

which consumes 0.926 mbps bandwidth of the bottleneck link. The UDP queue length is kept very small 

(about 4.4KB) all the time, so that we could see that due to the effect of SFB’s double buffered moving 

harsh, those non-responsive flows are effectively detected and rate-limited by SFB. 

    

6. CONCLUSION6. CONCLUSION6. CONCLUSION6. CONCLUSION    

 

In this paper, comparison had been made on four congestion control algorithms (RED, FRED, BLUE and 

SFB) based on the results obtained from the simulation made. Algorithm characteristics of the algorithms 

compared are also presented to give insight into our observations. We still find it difficult to conclude which 

algorithm is better in all aspects than another, especially, when we consider the deployment complexity. 

Summarily, we present the major trends of the comparative evaluation results in a table below. 

 

Table 2 summary of result obtainedTable 2 summary of result obtainedTable 2 summary of result obtainedTable 2 summary of result obtained    

 

 

Algorithm Algorithm Algorithm Algorithm     Configuration Configuration Configuration Configuration 

Complexity Complexity Complexity Complexity     

Space Space Space Space 

Requirement Requirement Requirement Requirement     

PerPerPerPer----Flow State Flow State Flow State Flow State 

Information Information Information Information     

Fairness Fairness Fairness Fairness     Link Link Link Link 

Utilization Utilization Utilization Utilization     

RED  Difficult  Large  No Unfair  Good  

FRED Adaptive (Easy) Small  Yes  Fair  Good 

Blue  Easy  Small  No  Unfair  Good  

SFB Difficult  Large  No Fair  Good  



                                                                                                                                                               

    

 

150 

 
                    Vol. 5  No. 2, June  2017 

        

REFERENCES REFERENCES REFERENCES REFERENCES     

    

1. Stevens W; “TCP Slow Start, Congestion Avoidance Fast Retransmit And Fast Recovery Algorithms” 

RFC 2001, Jan 1997 

2. V. Jackson, “Congestion Avoidance And Control”; ACM Sigcomm 88, August 1988 

3. Wagle J. “Congestion Control In IP/TCP”; RFC896, January 1984. 

4. Gaynor M; “Proactive Packet Dropping Methods For TCP Gateways” October 1996. 

5. T. Blaskar Reddy, Ali Ahammed and Reshma Banu, “Performance Comparison Of Active Queue 

Management Technique” In IJCSNS Vol.9   No.2, February 2009. 

6. Shenker, S, Parthridge, C, and R Guerin, “Specification of Guranteed Quality of Service”, 1996 Work 

In Progress. 

7. T.V. Lakshman, Arnie Neidhardt, Tennis Ott; “The Drop Front  Strategy In TCP Over ATM And Its 

Interworking With Other Control Features” In FOCOM 96. MA 28.1  

8. W. Willinger, M.S Taggu, R. Sherman, D.V. Wilson. “Self – Similarity Through High Variability 

Statistical Analysis Of Ethernet LAN Traffic At The Source Load”, ACM SIGCOMM 95, August 1995  

9. Floyd, S; “Connection With Multiple Congested Gateway In Packet Switched Networks”, Part 1: One 

Way Traffic Computer Communication Review, Vol 21 No.5, October 1991  

10. G.F. Ali Ahammed, Reshma Banu “Analyzing  The Performance Of Active Queue Management  

Algorithm” International Journal Of Computer Networks And Communication (2010). 

11. Demers, A, Kesh, S, and Shenker S, “Analysis and Simulation of a Fair Queueing Research and 

Experience Vol. 9, 1990. 

12. Floyd, S. And Jacobson , V; “Link Sharing And Resource Management Models For Packet Networks”; 

IEEE/ACM Transactions On Networking Vol. 3, No. 4, August 1995 

13. S. Paul P. Gopia and Singh. “Performance Measure of Drop Tail and RED”; Proceeding of ICEP, 

2010 

14. Monley, R. “Reducing Packet Loss and Latency by Active Queue Management Algorithm” CSCI 3902. 

Seminar 1, UMM CSCI Twiki; (2003). 

15. Aflualiya S. Lapsley D.E Low S.H Randomly Early Marking For Internet Congestion Control” 

IEEE/ACM Transaction On Networking Vol.15, No.3  (2001).  

16. D. Lin and R. Morris  

“Random Early Dectation” ACM SIGCOMM Computer Communication Review, Vol. 27 No.4 

17.  B. Braden et al Recommendation on  “Queue Management  and Congestion Avoidance in Internet”, 

RFC 2309; (1998) 

18. B. Braden, Estrin  B. Clark, D, Crow J, Decring, Dfloyd, S, Jacobson, et al Recommendations on 

“Queue Management And Congestion  Avoidance In The Internet”, Internet Draft. (1998). 

19.  Ningning HU, LIUREN, Jichuan Chang, “Evaluation of Queue Management Algorithms” Class 

Project Report for 15-744 Computer Networks  

20. T.  Bonald et al “Analytic Evaluation of RED Performance” in Proceeding of IEEE INFOCOM, 2000 

21. J. Zhino and R Govindin “Understanding Packet Delivery Performance In Dense Wireless Sensor 

Networks” In Proceeding Of ACM Subsys. 2003  

22. Feng W., Kandlur D, Saha D, Shin K.  “A self – Configuring RED Gateway”; In Proceeding of 

IEEE/INFOCOM. (1999) 

23.  S. Mascolo, C. Casette, M. Gerla S.S Lee, And M Sanadidi; “TCP Westwood, Congestion Control 

With Fast Recovery” Technical Report 2000 

24. M. Ahman, V. Paxson, and W. Stevens “TCP Congestion Control” RFC 2581; April 1999. 

 

 


