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ABSTRACT   
 

Traditional drug discovery is an expensive and laborious multi-step process that requires a detailed 
understanding of disease pathobiology, potential drug target characterization, synthesis, 
experimental evaluation, and optimization of putative drug candidates as a pretext for clinical 
evaluation which often does not translate into success. With the advent of whole genome 
sequencing, machine learning, and artificial intelligence, drug discovery and development are now 
enhanced both in speed and precision. SkyNet For Drugs (Skynet4D) is an AI-driven platform that 
automates the preclinical processes by integrating drug-target retrieval based on patient's diagnostic 
medical reports, and chemical database/ADMETox screening leading to the selection of a potential 
drug candidate. Skynet4D framework utilizes a combination of Natural Language Processing (NLP-
GenAI), custom molecular docking tools (DiffDock®-GNINA®) for high-throughput virtual screening 
(HTVS), and an AI-enabled ADMETox (ADMETAi®) tool to generate drug candidates with a high chance 
of being effective within clinical settings.  In this paper, the proof-of-concept for Skynet4D was 
presented with a medical diagnostic report of a COVID-19 patient; leading to the prediction of Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS‑CoV‑2) main protease, betaCoV_Nsp5_Mpro as 
putative targets. The target sequences retrieval, 3D structures retrieval/generation, putative ligand 
search (COCONUT, LOTUS, ChEMBL, etc.), and ranking were done autonomously within the Skynet4D 
pipeline. DiffDock docking confidence score of ≥ 1 and a GNINA binding affinity score of ≤ -6.0 
kcal/mol, signaled suitable ligands for selection within the DiffDock®-GNINA®. The best-ranked 
compounds were filtered with ADMETAi® which ultimately gave Lansoprazole as the candidate 
compound.  
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1. INTRODUCTION 
 
Traditional drug development methods are painstakingly long, costly, and often have uncertain 
outcomes. This process usually includes disease identification and selection, validating disease 
target(s), discovering, and optimizing lead molecule(s), and performing preclinical and clinical trials.1-

3 This process often differs between drugs; for example, according to1, drugs that provide only minor 
improvements in disease conditions compared with existing marketed drug solutions usually have a 
much longer review process than those urgently needed.  The cost of taking a drug through the 
traditional discovery process exceeds US $ 2 billion.4 The development of computer-assisted drug 
discovery/design (CADD) has significantly affected the creation of small therapeutic molecules over 
the past three decades.5 Computational or in silico drug discovery is a modern approach to drug 
discovery that utilizes computer-based methods to identify, design, and optimize potential drug 
candidates.6 In the post-genomic era, there has been a significant increase in the abundance of 
information available on biomacromolecules and small molecules. This wealth of data has 
revolutionized the CADD approach and led to tremendous benefits. 
 
Computational drug discovery approaches can be grouped into structure-based drug design (SBDD) 
and ligand-based drug design (LBDD).7 SBDD methods, such as molecular docking and de novo drug 
design, rely on understanding target macromolecules' structure. This information is commonly 
derived from crystal structures, nuclear magnetic resonance (NMR) data, and homology models, 
which are readily accessible in protein databases, such as the Protein Data Bank (PDB) and UniProt.5  
In SBDD, a potential therapeutic target and its associated ligands are identified, and using high-
throughput screening techniques, these ligands are docked at the binding site of the target protein 
to identify the most suitable ligands with potential drug-like properties.8 The top hits ranked by a 
scoring system using the electrostatic and steric interaction properties of the binding site with the 
ligand, such as binding affinity, are then selected and synthesized. These top compounds are further 
tested in vitro.8 

 
Numerous drugs have been identified through this process. A notable example is the thymidylate 
synthase inhibitor Raltitrexed. Amprenavir, a potential HIV protease inhibitor, was discovered through 
protein modeling and molecular docking simulations.9  

 

 
 

Fig. 1: The Computationally Aided Drug Discovery Pipeline 
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When potential drug targets lack three-dimensional (3D) structures, LBDD tools, such as quantitative 
structure-activity relationship (QSAR), pharmacophore modeling, molecular field analysis, and 2D or 
3D similarity assessment, are essential for gaining insights into the interactions between drug 
targets and ligands. This facilitates the construction of predictive models appropriate for lead 
molecule discovery and optimization.6 An example of LBDD in action is the discovery of a novel family 
of Peroxisome Proliferator-Activated Receptor ɣ agonists (PPAR-ɣ) which are receptors for the 
antidiabetic drug thiazolidinedione.10,11  
tools. 
 
These computational methods' efficiency, accuracy, and speed rely enormously on various technical 
settings, such as scoring functions, molecular similarity calculations, conformation generation, and 
sampling, amongst others.12--15Fig. 1 shows an atypical drug discovery pipeline using computational 
 
1.1. RELATED WORKS 
 
The COVID-19 pandemic presented the opportunity to test the efficiency and applicability of CADD 
techniques in rapidly generating novel targets for new and unknown disease conditions. Using SBDD 
techniques, virtual screening, and HTS, the authors in (Jin et. al., 2020)16 identified a mechanism-
based inhibitor and through HTS six compounds that inhibit the SARS-CoV-2 M protein. Out of the six 
compounds, docking scores and in vitro antiviral assays revealed that the Michael acceptor inhibitor 
known as N3 and ebselen as the strongest antiviral inhibitors to the target protein. The study 
acknowledges that while cell-based phenotypic screening is valuable, its complexity makes it less 
compatible with high-throughput pipelines. This limitation hinders the ability to effectively identify 
specific molecular targets or mechanisms of action. Additionally, the high-throughput screening 
identified hits that may covalently bond to the catalytic cysteine of the SARS-CoV-2 main protease (M 
pro).  
 
However, these compounds are likely to be promiscuous binders, which may limit their potential as 
viable drug leads. This raises concerns about the specificity and efficacy of the identified 
compounds. While the study presents promising leads, further validation through additional 
experimental studies is necessary to confirm the effectiveness and safety of the identified 
compounds in clinical settings. This step is crucial for translating laboratory findings into therapeutic 
options. The study results give further credence to the impact computational drug discovery 
techniques can provide to the timely development of drug molecules in a pandemic scenario. 
Yazdani et al, (2022)17 employed virtual screening and CADD approaches to identify dual-function 
inhibitors for isoforms of the human inosine monophosphate dehydrogenase (IMDPH).  
 
This enzyme plays a key role as an immunosuppressant in heart and kidney transplants. The 
methodology involved retrieving the 3D structures of IMDPH isoforms type II (1NF7) and type I (1JCN) 
and re-docking these compounds using two search algorithms (MolDock Optimizer and MolDock 
Simplex Evolution) with two scoring functions (PLANTS score and PLANTS score grid) in the Molegro 
Virtual Docker v6.0 program. ZINC15 was utilized as the ligand screening database with selected 
ligands downloaded in their 3D format for virtual high-throughput screening followed by a double-
step docking process in the binding pockets of both protein isoforms. The authors used SwissADME 
and DruLi software as the ADMET prediction tools followed by molecular dynamics simulations using 
the GROMACS software.  
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Results of the study showed twelve ligand molecules with potential activity against the IMDPH 
enzyme with MD simulations resulting in the selection of only a single molecule with high inhibitory 
activity. Structural analogs can be generated using SBDD approaches and tested for antiviral and 
anticancer abilities as IMDPH inhibition seems to play a role in improving outcomes in patients with 
Covid-19. In Delre et al, (2022)18, the authors investigated potential molecules capable of reducing 
or preventing human-ether-a-go-go-related (hERG)-mediated drug-induced cardiotoxicity.  Their 
methodology involved the use of a ligand-based (QSAR)-machine learning approach involving the 
development of six classification algorithms, random forest, K-nearest neighbors, gradient boosting, 
extreme gradient boosting, multilayer perceptron, and support vector machines to predict molecules 
capable of inhibiting the hERG potassium channel. ChEMBL and hERG-DB were used as the source 
of bioactivity data.  
 
Ligand molecules retrieved were sanitized using an in-house procedure and converted to a 
standardized QSAR-ready format using Obabel on the KNIME Analytics platform, allowing for 
uniformity in ligand molecule representation. Additional filtering methods were employed such as 
employing a specified IC50 threshold. These methods resulted in a final dataset of 792 compounds 
for classifier testing. The dataset was split into test and validation sets and using the DRAGON 
software, molecular descriptors were obtained for each molecule. The Synthetic Minority 
Oversampling Technique (SMOTE) was used to balance the number of blocker and non-blocker 
samples in the test dataset. A five-fold CV was used in training all six classification models which 
accurately predicted three compounds from the potential drug pool as hERG-blockers.  
 
From the study, the authors demonstrate the applicability of incorporating machine learning models 
in the drug discovery pipeline. The models can be combined with SBDD approaches for drug 
molecule classification and identification. Despite this, further studies should investigate the 
applicability and efficiency of this ligand-based prediction tool against other toxicity-induced disease 
conditions. Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a significant global 
health threat, exacerbated by drug-resistant strains and their synergy with HIV. In Aina et al, 
(2024),19 the authors explored the potential of quinoline derivatives as new anti-TB agents, 
leveraging computational chemistry to design and screen novel compounds. 2-chloroquinoline-3-
carbaldehyde was selected as a lead compound based on its drug-likeness and favorable 
bioavailability parameters and then structurally modified to generate thirty-two (32) hypothetical 
compounds with potential inhibitory effects on M. tuberculosis.  
 
These compounds were then analyzed for drug-likeness using ADME criteria in SwissADME, resulting 
in fourteen compounds showing potential as drug candidates. Toxicity assessments indicated that 
five selected compounds exhibited no significant toxicity, making them suitable for further 
evaluation. Twenty-seven (27) standard drugs for some selected diseases were downloaded from 
PubChem to serve as reference drugs to compare the performance of these hypothetical 
compounds. Docking simulations using Pyrx AutoDock indicated that two of the five compounds 
exhibited higher binding energies against various disease proteins than standard anti-TB drugs. The 
results suggest that the designed compounds could outperform existing treatments, warranting 
further investigation.  
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The findings highlight the effectiveness of in-silico methods in drug design, particularly for 
addressing challenges posed by drug-resistant TB strains. Future studies should further explore the 
pharmacological properties and therapeutic potential of these compounds in clinical settings. In 
Avilés-Alía et al, (2024),20 the authors highlighted the urgent need for effective antivirals against 
SARS-CoV-2, especially given the limitations of current treatments and the challenges posed by 
vaccine hesitancy and viral evolution.  
 
The study emphasized the potential of drug repurposing and computational methods to expedite the 
identification of antiviral compounds targeting the SARS-CoV-2 spike protein, particularly the 
receptor binding domain (RBD). The target protein receptor’s crystal structure was retrieved from the 
PDB and used as the initial structure for molecular dynamics simulations, performed using the 
AMBER20 suite of programs.  
 
A comprehensive virtual screening process was conducted using FDA-approved drugs and natural 
products from the Selleck FDA-approved drugs and Selleck database of Natural Products, employing 
ensemble docking and pharmacophore-guided approaches to identify potential inhibitors. The 
screening resulted in a shortlist of 48 compounds, which underwent further evaluation through 
molecular dynamics simulations to determine their binding efficacy. Ten compounds showed 
significant binding efficacy and were procured for further biological validation.  
 
The selected compounds were tested in vitro using pseudotyped vesicular stomatitis virus assays to 
evaluate their antiviral activity against SARS-CoV-2, leading to the identification and selection of two 
compounds that showed no toxic effects in cells. To conclude, the research successfully identified 
two lead compounds as promising candidates for further development as antiviral agents against 
SARS-CoV-2, with distinct mechanisms of action. The findings underscore the effectiveness of the 
computational drug repurposing approach in rapidly identifying potential treatments for emerging 
viral threats. Further studies could employ additional computational approaches in structurally 
improving these compounds to enhance their efficacy against SARS-CoV-2. 
 
In Ayodele et al, (2024),21 the authors aimed to identify the deleterious non-synonymous single 
nucleotide polymorphisms (nsSNPs) in the O-linked N-acetylglucosamine transferase (OGT) gene that 
could serve as therapeutic targets for diabetes. One hundred and fifty-nine (159) SNPs were 
retrieved from the National Centre for Biotechnology Information (NCBI) dnSNPs server, and their 
effects were investigated using PhD-SNP, SNPs&Go, PROVEAN, and Polyphen software tools. This 
resulted in identifying seven (7) SNPs that generated consistent deleterious effects across the four 
tools.  
 
Here, we present SkyNet For Drugs (Skynet4D) as an AI-driven platform that automates the 
preclinical processes by integrating drug-target retrieval based on patient's diagnostic medical 
reports, and chemical database/ADMETox screening leading to the selection of a potential drug 
candidate. Skynet4D framework utilizes a combination of Natural Language Processing (NLP-GenAI), 
custom molecular docking tools (DiffDock®-GNINA®) for high-throughput virtual screening (HTVS), 
and an AI-enabled ADMETox (ADMETAi®) tool to generate drug candidates with a high chance of 
being effective within clinical settings. 
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2. METHODS 
 
2.1 SkyNet for Drugs Application Pipeline 
To improve the drug discovery process via automation, Skynet for Drugs (SkyNet4D) uses a novel 
computational approach to perform SBDD. First, a medical diagnostic report is scanned, the 
diagnosed disease conditions are retrieved, and a high-throughput database search for the target 
protein sequence and the possible ligands known to bind to the sequence are retrieved. The SBDD 
process begins with the molecular docking of all retrieved proteins and their ligands. Using a 
combination of binding affinity and confidence scores from our docking tools, the best ligands were 
selected and passed through a chemical absorption, distribution, metabolism, excretion, and toxicity 
(ADMET) screen to identify molecules with the best drug-likeness scores (Figure 2).  
 
SkyNet4D was the first to use patient medical reports to generate small-molecule drug targets, 
significantly improving the drug discovery process for research scientists and pharmaceutical 
companies 

 
 
 
 
 
  

Fig 2: SkyNet for Drugs (SkyNet4D) Computer-Assisted Drug Discovery Process 
 
 

2.1.1 Patient Medical Report Screening 
The first step in using SkyNet for Drugs (SkyNet4D) is uploading a patient medical report for further 
downstream processing. We employed an NLP pipeline that used GenAI to read patient reports and 
identify patient-reported medical conditions. Using OpenAI GPT model 3.5, the NLP pipeline was 
primed to identify specific diseases or conditions stated in the medical report, determine the types of 
compounds related to the identified disease condition, and identify the biological target in the body 
that is compromised by the disease condition.  
Owing to its vast training data collection, the pipeline is further primed to retrieve all genetic, 
pharmacological, and medical information from relevant databases concerning the identified 
disease conditions and biological targets. This information included the target disease treatment, 
causal organism of the condition, and available treatment options, among other specified search 
terms. 
 
2.1.2.  Protein Sequence and Bioactivity/Ligand Database Search 
After obtaining the target causal organism, we performed a global search of the Protein Data Bank 
(PDB) using the organism’s name and the target causal protein identified from the NLP-GenAI 
pipeline. To verify that the protein sequence obtained from the PDB was the correct target sequence, 
cross-validation of the sequence was performed using its unique accession number from UniProt. 
PDB IDs and their matching UniProt accession numbers confirmed the target protein sequences. 
This process was repeated for each disease-related protein sequence. Other data annotations 
retrieved from UniProt included protein sequence length, molecular weight, common name, taxid, 
uniProtkbId, and nucleotideId.  
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A ligand search was performed in the Chemistry Database for Bioactive Molecules (ChEMBL) using 
the protein accession number. The target hits obtained were filtered using a single protein identifier 
and score ID. An activity search was performed on all filtered queries that returned results using the 
target_chembl_id as the search term, and further filtering for inhibitory activity using the IC50 search 
term. This search returned a data frame containing the target protein, its IC50 values, and all known 
ligands with activity against the target protein. The ligand data frame was filtered to ensure that only 
the best ligands were selected for downstream processing. All inactive or partially active ligands (with 
IC50 threshold values greater than 1000) were excluded. The ligand structures were sanitized by 
removing duplicates and null values. To widen the ligand search space, natural databases, such as 
COCONUT and LOTUS, were searched using the same search criteria described for ChEMBL. All 
results obtained were stored in a local database.  
 
2.2 DiffDock®-GNINA® 
Following the protein-ligand search, each protein sequence and its associated ligands were 
appropriately prepared into respective structured data file (SDF) and protein data bank (pdb) 
formats. SMILES was checked for molecular validity using the RDKit Cheminformatics tool before 
converting to SDF using the Open Babel toolkit. The PDB format for each protein sequence was 
obtained from the Protein Data Bank repository.  Protein-ligand pairs in their respective file formats 
were then fed to the DiffDock Molecular Docking tool using twenty (20) inference steps, batch size of 
ten (10) and ten (10) samples per protein-ligand complex, to undergo molecular docking.  
 
This step facilitated the identification of ligands with strong binding affinities to the target disease 
protein sequence. The results from the DiffDock molecular docking process were then fed into the 
GNINA docking protocol to establish protein-ligand pairs with the strongest binding affinities. Using a 
filter score of DiffDock confidence score and GNINA minimized affinity score, the molecules 
generated from the DiffDock process were filtered, and only the best ligands were selected. 
 
2.3 ADMETAi® 
The ADMET score is an important metric for measuring the drug-likeness of a molecule. The chemical 
absorption, distribution, metabolism, excretion, and toxicity (ADMET) score measures several 
parameters that contribute to determining whether a proposed molecule is suitable as a drug 
candidate during in silico drug discovery (Guan et al, 2019). Owing to the vast nature of these 
molecular predictors, we used an industry-based standard model, ADMETAi, which takes a SMILE 
molecule in SDF format and returns a list of ADMET descriptors, such as molecular weight of the 
molecule, solubility (logP), hydrogen bond acceptor and donor values, quantitative estimation of drug-
likeness (QED), bioavailability, and Lipinski score amongst many others. 
 
3. RESULTS 
 
3.1 SkyNet4D Implementation 
3.1.1 NLP report screening and bioactivity database query 
In developing our application, our first approach involved using an NLP technique combined with API 
calls to OpenAI's GPT-4 to screen and interpret the provided patient medical report. This approach 
provides an efficient way to identify the correct diseases and their targets. The results were set up 
under sections, including the name of infection/disease, causal organism, known target treatment 
options, disease target mechanism of action, type of target nucleic acid (DNA/RNA), and 
disease/non-disease, among other selected headings.  
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Using the Causal organism, name of disease/condition, and name of the target protein, a database 
search on Protein Data Bank (PDB) and UniProt was performed to retrieve the protein sequence of 
the disease condition. UniProt ID was then used to perform a Chemistry Database for Bioactive 
Molecules (ChEMBL) search to retrieve all ligands for that protein sequence.  
 
The ligand search was further expanded to include natural ligand derivatives from natural product 
databases, such as COCONUT and LOTUS. Using the selection criterion, only ligands with strong 
inhibitory concentration (IC50) values as provided by ChEMBL were selected for further downstream 
processing. Figure 3A shows the results of the NLP screening pipeline when run on a test medical 
report. Figure 3B shows the results of the protein sequence database query before performing the 
bioactivity query. SkyNet4D was tested using a simulated patient medical data record of Patient John 
Doe to demonstrate this process. SkyNet4D successfully recognized that the patient had been 
diagnosed with COVID-19 pneumonia from the NLP screening pipeline.   
 

 
 

Fig. 3: (A) Sample results from protein sequence search on UniProt 
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Fig. 3(B): NLP Screening results of Patient Doe.  
 

The protein sequence retrieved was then passed (using the accession number) to the ChEMBL 
database for bioactivity search using the ChEMBL SDK as described earlier. This search yielded 
1538 ligand records with inhibitory activity against our target protein (Figure 4A) which was further 
filtered using the standard IC50 value and canonical smile columns by dropping null and duplicate 
values. This filtering yielded 1136 valid ligand molecules that were further filtered by selecting only 
active ligands with strong inhibitory potential against the target protein sequence (IC50 < 1000). 
This final filtering yielded 581 ligands (Figure 4B).  
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Fig. 4: (A) Initial bioactivity search results using target protein sequence accession number on 

ChEMBL SDK. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4(B) Final ligand results containing only ligands with strong and active inhibitory properties against 
the target protein sequence 
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3.2 Docking 
The protein sequences and ligands obtained from the screening and bioactivity searches were stored 
in the required PDB and sdf formats, respectively, in preparation for high-throughput screening 
through docking (Figure 5). For the docking process, we used a dual approach that performed an 
initial docking with DiffDock and a second docking with GNINA. The results of the DiffDock docking 
process then served as input for the GNINA docking application. This dual process was important as 
DiffDock provided a docking confidence score, while GNINA provided a binding affinity score, both of 
which provided a robust mechanism to allow for selecting only the best ligands for the drug-likeness 
check.  
 
Using a DiffDock docking confidence score of ≥ 1 and a GNINA binding affinity score of ≤ -6kcal/mol, 
suitable ligands were selected. We used the COVID-19 main protease, betaCoV_Nsp5_Mpro against 
selected ligands to test our docking pipeline (Figure 6A). Molecular docking/high-throughput 
screening is usually a time-intensive operation, however, a full run (using our test protein sequence 
from John Doe against 581 ligands obtained from the CHEMBL database. Based on docking scores, 
three hundred and thirty-six molecules (336) showed strong binding affinity for the target protein and 
were selected for the AdmeTox pipeline.  
 

 
 
 

Fig. 5: 3D structure of SARS-CoV-2 main protease betaCoV_Nsp5_Mpro 
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Figure 6: Some 2D structures of hit ligands. The best conformation was selected based on the 

binding affinity and docking confidence scores. 
 
3.3 ADMET Screening 
To assess the drug-likeness of the selected ligand molecules obtained from the docking process, we 
used ADMET analysis to evaluate their absorption, distribution, metabolism, excretion, and toxicity 
(ADMET) properties.  

 
 

Fig 7: Some ADMET Descriptors generated for some selected inhibitory  
ligands of SARS-CoV-2 main protease 

SMILE: 
COc1cccc2[nH]c(C(=O)N[C@@H](CC(C)C)C(=O)
N[C@@H](C[C@@H]3CCCNC3=O)C(=O)COC(=
O)c3c(C(F)(F)F)cc(C)nc3C)cc12 
Molecule formula: C34H40F3N5O7 
Molecular weight: 687.29 
 

SMILE: 
CC(C)(C)[C@H](NC(=O)OCc1ccccc1)C(=O)N[C@
@H](CC1CC1)C(=O)N[C@H](C=O)C[C@@H]1CC
NC1=O 
Molecule formula: C27H38N4O6 
Molecular weight: 514.28 
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This step is vital in the drug discovery process, as it establishes, in silico, the potential of a generated 
molecule as a drug candidate. ADMETAi simplified the ADMET check process, providing several 
descriptors of the generated molecules such as molecular weight, Lipinski, logP, ClinTox, AMES 
scores, etc. (Figure 7). The descriptors also contained additional descriptors generated from the 
DrugBank repository for benchmarking results. For the test target protein, 336 hit ligands obtained 
from the docking process were passed to the ADMET pipeline, and using selected ADMET descriptors 
and their scores, ten (10) molecules were selected as potential drug molecules (Figure 8A and Figure 
8B). The descriptors used were the Lipinski (>=2.0), AMES (<=0.7), Bioavailabity_Ma (>=0.4), 
BBB_Martins (>=0.2), ClinTox (<=0.4), Carcinogens_lagunin (<=0.3), QED (>=0.5), DILI (<=0.6) and 
HIA_Hou (>=0.7) (Table 1). 
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Figure 8A (above) and Figure 8B (below):  Top hits generated from the ADMETox Pipeline 

 
 
Table 1: Hit ligands and their ADMETox Properties DISCUSSIONS 

 
 
Since its inception decades ago, computer-aided drug discovery (CADD) has increased the number of 
clinical drug candidates available. Using advanced physics-based molecular modeling, deep learning, 
and artificial intelligence techniques coupled with the explosion of genomic and chemical data, some 
campaigns have shown promising disease target-to-drug molecule time as low as one (1) to two (2) 
months,22 or target-to-clinic under one (1) year.23 The recent development of ligand databases 
requiring universal methods for the virtual representation of small molecules has led to several 
reproducible methods for representing small molecules.  
 
Representations such as the Simplified Molecular Input Line System (SMILES), SMILES Arbitrary 
Target Specification (SMARTS), and International Chemical Identifier (InChI) are the most common 
representations.24 SMILES were designed for good human readability in a molecular file format. In 
contrast, SMARTS allow for variability in the represented molecular structures, allowing for the 
addition of substructure search functionality to SMILES. InChI provides a non-proprietary machine-
readable code unique for all chemical structures.24,25 
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Structure-based CADD (SB-CADD) focuses on modeling the ability of a molecule to interact with a 
binding site efficiently and favorably on a target protein. This binding site is often strongly involved in 
the biological functions of the protein.26 Novel compounds can then be identified by carefully 
analyzing this protein-binding site. Ligand-based Computer-Assisted Drug Discovery/Design (LB-
CADD) analyzes known ligand molecules and their interactions with a target of interest.  This is an 
alternative method for drug discovery that does not rely on an understanding or prior knowledge of 
the target protein structure. LB-CADD analyses the physicochemical properties and activities of 
known ligands and generates alternative structural designs of new compounds with desired drug-like 
properties).1 The first step in CADD involves identifying drug targets from a large repertoire of 
candidate macromolecules, a method that is often time-consuming, challenging, and important.27  
 
In developing SkyNet for Drugs, we streamlined this process by starting from the patient's medical 
report and retrieving relevant information such as disease names and target protein sequences. This 
significantly reduces the time required to identify the appropriate disease target and its associated 
ligands or binding molecules. Our high-throughput screening (HTS) method involves a multifaceted 
approach to obtaining ligands. This approach aims to increase the hits generated through HTS by 
combining the ligand search space to include chemical and natural databases. To ensure the 
efficiency and appropriateness of the generated ligand hits, we opted for a two-prong molecular 
docking screening approach, utilizing two industry-standard docking applications. This allowed the 
selection of the right molecules by combining the docking scores from both applications.  
 
AdMeTox screening of these hit ligands obtained from the docking process produced a considerable 
number of molecules that could serve as potential drug candidates and would require further testing 
in vitro and in vivo to establish the clinical efficacy of these identified targets. In SkyNet for Drugs, we 
aimed to create a complete system in which new molecules are generated and screened in silico for 
drug-likeness before moving the hit molecules for wet lab or clinical validation. We view this step as 
crucial as it reduces the number of clinical validation tests required on generated ligand molecules, 
thus providing significant advantages and improvements in the drug discovery process, especially for 
resource-poor establishments and regions.  
 
4. CONCLUSIONS 
 
Traditional drug discovery approaches are no longer viable due to exorbitant costs, substantial risk of 
failure, and time-consuming processes. However, computational approaches, recent advancements 
in machine learning, and deep learning present significant opportunities to lower costs, improve 
efficiency, and save time during drug discovery and development. Furthermore, these computational 
tools increase the discovery rate of new drugs and pave the way for innovative therapeutic 
interventions.  
 
Machine learning algorithms can pinpoint novel drug targets, unveil hidden correlations between 
diseases and molecular pathways, and anticipate potential repurposing opportunities for existing 
drugs. This comprehensive approach to drug discovery, driven by computational methods, holds 
promise for tackling complex diseases that have historically eluded conventional approaches. The 
synergy between computational approaches and experimental methods will be crucial in addressing 
global health challenges. These innovative technologies, in tandem with human expertise, will herald 
a new epoch of drug discovery characterized by heightened innovation and reduced costs. The 
continued development of these computational approaches will contribute significantly to shaping 
the future of pharmaceutical research and improving patient outcomes worldwide. 
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4.1 Future Perspective 
SkyNet For Drugs represents the first phase in our efforts to enhance drug discovery using 
computational approaches. The next step involves a generative artificial intelligence model that can 
generate ligand structures by examining protein sequences. This is an effort to address the biological 
problem of undruggable protein targets. 
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